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Abstract
The evaluation of thermonuclear reaction rates requires the calculation of
several thermonuclear functions. These functions can be written as the Laplace
transform of locally integrable functions which have an asymptotic expansion in
negative rational powers of their variable. In this paper we obtain asymptotic
expansions of the Laplace transform of these kinds of functions for small
values of the parameter of the transformation. Error bounds are obtained
at any order of the approximation for a large family of Laplace transforms
which include thermonuclear functions. Then we apply this asymptotic theory
to the calculation of convergent expansions of four thermonuclear functions in
powers of the dimensionless Sommerfeld parameter. Some of these expansions
also involve logarithmic terms in the dimensionless Sommerfeld parameter.
Accurate error bounds are given at any order of the approximation.

PACS numbers: 02.30.Gp, 02.60.−x
Mathematics Subject Classification: 41A60, 33C65

1. Introduction

The energy released by stars is due to nuclear reactions that occur near their centres where
the motion of nuclei is in thermal equilibrium. The state of stellar matter is such that only the
lightest elements contribute to these reactions because of the Coulomb repulsion between
nuclei (see [5] and references therein for a full explanation of this phenomenon). Charged
particle reaction rates for high-temperature and low-density thermonuclear plasma in the
cosmological and stellar nucleosynthesis depend strongly on the penetrability of the Coulomb
barrier and the velocity distribution of the reacting particles [4]. In fact, the reaction rate rij of
reacting particles i and j , in the case of nonrelativistic nuclear reactions (low energy) taking
place in a nondegenerate environment, is usually expressed as rij = ninj 〈σv〉, where ni and
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nj are the particle number densities of the reacting particles i and j respectively [2, 6–9]. The
symbol 〈σv〉 represents the reaction probability integral [9, 11]:

〈σv〉 ≡
√

8

πµκ3T 3

∫ ∞

0
Ef (E)σ(E) dE (1)

where µ is the reduced mass of the reacting particles, T is the temperature, κ is the Boltzmann
constant, σ(E) is the reaction cross section and f (E) is the distribution of energy of the
reacting particles.

Theoretical considerations and experimental data suggest several possible forms for the
cross section σ(E) and the energy distribution f (E) in the above formula. For example, for
nonresonant nuclear reactions, the cross section has the form [7, 9]

σ(E) = S0 + S1E + S2E
2

E
exp

{
−2π

√
µ

2

zizj e
2

h
√

E

}
where S0, S1 and S2 are experimental constants, h is Planck’s constant, e is the electron charge
and zie and zj e are the charges of the reacting particles. For isotropic Maxwell–Boltzmann
kinetic-energy distributions, the distribution of energy f (E) has the form

f (E) = e−E/kT .

After introducing the cross section and energy distribution in (1), we have

〈σv〉 =
√

8

πµ

2∑
j=0

Sj

(κT )1/2−j

∫ ∞

0
yj e−y e−z̃/

√
y dy

where y = E/(κT ) is a dimensionless integration variable and z̃ ≡ 2π
√

µ

2κT
zizj e

2

h
is the

dimensionless Sommerfeld parameter. For light reacting particles (typically 3He or 4He) this
parameter is of order z̃ ∼ 10−4T −1/2, that is, 0 < z̃ � 1 unless T is near the absolute zero.
Therefore, the evaluation of reaction rates, in the standard nonresonant Maxell–Boltzmann
case, requires the calculation (or approximation) of the integrals

∫∞
0 yj e−y e−z̃/

√
y dy,

j = 1, 2, 3, where z̃ is a small parameter. Deviations from the ideal physical situation
described above require a more general integral of the following form [9].

Nonresonant case:

I1(z̃) ≡
∫ ∞

0
yν e−ay e−z̃y−1/ρ

dy ν ∈ R a > 0 z̃ > 0 ρ ∈ Q+.

Physical situations different from the ideal nonresonant Maxell–Boltzmann case translate
into modifications of the cross section σ(E) for the reacting particles and/or their energy
distribution f (E). Then, the computation of 〈σv〉 requires the calculation of integrals different
from I1(z̃). The integrals to be evaluated in these nonstandard physical situations are listed
below.

If the thermonuclear fusion plasma is not in thermodynamic equilibrium and there is
a cut-off of the high-energy tail of the Maxwell–Boltzmann distribution, the thermonuclear
function to be evaluated is [2, 9] as follows.

Nonresonant case with high-energy cut-off:

I2(z̃) ≡
∫ d

0
yν e−ay e−z̃y−ρ

dy ν ∈ R a > 0 z̃ > 0 ρ ∈ Q+ d ∈ R+.

If due to plasma effects, a depletion of the Maxwell–Boltzmann distribution has to be
taken into account, the thermonuclear function is [2, 9, 10]
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Nonresonant case with depleted tail:

I3(z̃) ≡
∫ ∞

0
yν e−ay e−byδ

e−z̃y−ρ

dy ν ∈ R a > 0 b > 0 z̃ > 0 ρ, δ ∈ Q+.

The Coulomb barrier seen by a reacting particle in dense ionized matter may be modified
by the surrounding cloud of electrons. The electron screening effects for the reacting particles
modify the cross section and then the thermonuclear function is [2, 7, 9, 11] as follows.

Screened nonresonant case:

I4(z̃) ≡
∫ ∞

0
yν e−ay e−z̃(y+b)−ρ

dy ν ∈ R a > 0 z̃ > 0 ρ ∈ Q+ b > 0.

If the cross section has a broad single resonance, it can be calculated using the Breit–
Wigner formula. Then, the thermonuclear function to be evaluated is [8, 9] as follows.

Resonant case:

I5(z̃) ≡
∫ ∞

0

yν e−ay e−z̃y−ρ

(b − y)2 + g2
dy ν, b, g ∈ R a > 0 z̃ > 0 ρ ∈ Q+ g 	= 0.

A depletion of the tail of the Maxwell–Boltzmann distribution in the presence of a
resonance leads to the thermonuclear function [9] as follows.

Resonant case with depleted tail:

I6(z̃) ≡
∫ ∞

0

yν e−ay−byδ

e−z̃y−ρ

(b − y)2 + g2
dy ν, b, g ∈ R a > 0 z̃ > 0 ρ, δ ∈ Q+ g 	= 0.

Some analytical approximations to I1(z̃) can be found in [3, 4] and [11]. But the more
exhaustive investigation in the calculation of the integrals I1(z̃), . . . , I6(z̃) has been developed
by Haubold, Mathai and Anderson [2, 6–9]: they write these integrals in terms of G or
H functions of some positive power of z̃. Then, from the known expansions of these two
functions in powers of their argument [13, 14], these authors obtain convergent expansions of
these thermonuclear functions for small z̃. From the asymptotic approximations of G and H for
large values of their argument, they also obtain asymptotic approximations of I1(z̃), . . . , I6(z̃)

for large values of z̃. The thermonuclear function I1(z̃) may be written as a G function with
variable z̃2 and then it can be expanded as a power series of z̃2 [8]. But each of the remaining
integrals I2(z̃), . . . , I6(z̃) is written as an infinite series of G functions, which in turn becomes
a double or triple series in powers of z̃.

The first purpose of this work is to obtain asymptotic (in fact convergent) expansions of
the six thermonuclear functions in the form of a simple series of powers of z̃. This more
simple analytical expression clarifies the analytic properties of the thermonuclear functions
as functions of z̃ and simplifies their numerical evaluation. Of course, the expansion of I1(z̃)

obtained here agrees with that obtained by Haubold, Mathai and Anderson [2, 7–9]. Moreover,
we will obtain accurate error bounds for the remainder at any order of the approximation. To
face these challenges we require the distributional method to approximate Laplace transforms
near the origin ([17], chapter 6). Then, the first step is to write every thermonuclear function
I1(z̃), . . . , I6(z̃) in the form of a Laplace transform:

Lf (z) ≡
∫ ∞

0
f (t) e−zt dt (2)

with a parameter z proportional to z̃ or some positive power of z̃.
With the change of variable y = z̃ρ t, I1(z̃) reads

I1(z̃) = z̃ρ(ν+1)Lf1(az̃ρ) f1(t) ≡ tν e−t−1/ρ

. (3)
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With the change of variable y = d(t + 1)−1/ρ, I2(z̃) reads

I2(z̃) = dν+1

ρ
e−z̃d−ρLf2(d

−ρ z̃) f2(t) ≡ (1 + t)−(ν+1)/ρ−1 e−ad(1+t)−1/ρ

. (4)

With the change of variable y = t−1/ρ, I3(z̃) reads

I3(z̃) = 1

ρ
Lf3(z̃) f3(t) ≡ t−(ν+1)/ρ−1 e−at−1/ρ−bt−δ/ρ

. (5)

With the change of variable y = u−1/ρ − b, I4(z̃) reads

I4(z̃) = eab

ρ

∫ b−ρ

0
u−1/ρ−1(u−1/ρ − b)ν e−z̃u e−au−1/ρ

du.

Writing this integral as the difference
∫ b−ρ

0 = ∫∞
0 − ∫∞

b−ρ and performing the change of variable
u = t + b−ρ in the second integral, we have

I4(z̃) = eab

ρ

[
L

f
(1)
4

(z̃) − e−b−ρ z̃L
f

(2)
4

(z̃)
]

f
(1)
4 (t) ≡ t−1/ρ−1(t−1/ρ − b)ν e−at−1/ρ

f
(2)
4 (t) ≡ f

(1)
4 (t + b−ρ).

With the change of variable y = t−1/ρ, I5(z̃) reads

I5(z̃) = 1

ρ
Lf5(z̃) f5(t) ≡ t−(ν+1)/ρ−1 e−at−1/ρ

(b − t−1/ρ)2 + g2
. (6)

With the change of variable y = t−1/ρ, I6(z̃) reads

I6(z̃) = 1

ρ
Lf6(z̃) f6(t) ≡ t−(ν+1)/ρ−1 e−at−1/ρ−bt−δ/ρ

(b − t−1/ρ)2 + g2
.

Asymptotic expansions of Laplace transform (2) near the origin (small z) of functions
f (t) that (i) are locally integrable on [0,∞) and (ii) have an asymptotic expansion in integer
powers of t−1 have been fully investigated by Wong ([17], chapter 6). But for ρ−1 /∈ N, the
functions f1(t), . . . , f6(t) above do not admit an asymptotic expansion in integer powers of
t−1, but in integer powers of t−1/ρ . Then, Wong’s method is not directly applicable.

The second purpose of this paper is then: (i) the generalization of Wong’s distributional
method to obtain formal asymptotic expansions of Laplace transform (2) near the origin of
locally integrable functions f (t) on [0,∞) which have an asymptotic expansion in negative
rational powers of t, (ii) show the asymptotic character of these expansions and (iii) obtain
error bounds at any order of the approximation for a large family of Laplace transforms which
include the thermonuclear functions.

The paper is organized as follows. In section 2 we introduce the above mentioned
generalization of Wong’s method. As an illustration of the power of this method, we obtain in
section 3 convergent (and asymptotic) expansions in powers of the dimensionless Sommerfeld
parameter z̃ of I1(z̃), I2(z̃), I3(z̃) and I5(z̃) (for I2, I3 and I5 only in the case ρ ∈ N). The
computations of the expansions for I2, I3, I4, I5 and I6 in the general case ρ ∈ Q+ are more
involved and we relegate them to a forthcoming paper. We also obtain error bounds for the
expansions mentioned. Several numerical examples are shown as illustrations in section 4.
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2. Distributional approach for Laplace transforms

In the following, f (t) denotes a locally integrable function on [0,∞) which satisfies

f (t) =
n−1∑
k=K

ak

tk/s+β
+ fn(t) s ∈ N K ∈ Z 0 < Re β � 1/s (7)

{ak, k = K,K + 1,K + 2, . . .} is a sequence of complex numbers and fn(t) = O(t−n/s−β)

when t → ∞. (In chapter 6 of [17], only the case s = 1 and β ∈ R, 0 < β � 1, is considered.)
In the following we use the notation introduced in [17]. Empty sums must be understood as
zero.

2.1. Asymptotic expansion of Lf (z) for small z

We denote by S the space of rapidly decreasing functions on [0,∞) and by 〈Λ, ϕ〉 the image
of a tempered distribution Λ acting over a function ϕ ∈ S. Since f (t) in (7) is a locally
integrable function on [0,∞), it defines a distribution f:

〈f, ϕ〉 ≡
∫ ∞

0
f (t)ϕ(t) dt.

The distributions associated with t−k−β, k = 0, 1, 2, . . . , n − 1, are given by [17, chapter 5]

〈t−k−β, ϕ〉 ≡ 1

(β)k

∫ ∞

0
t−βϕ(k)(t) dt if 0 < Re β < 1

〈t−k−β, ϕ〉 ≡ 1

(i Im β)k+1

∫ ∞

0
t−i Im βϕ(k+1)(t) dt if 1 	= β = 1 + i Im β

where (β)k denotes the Pochhammer’s symbol of β, and

〈t−k−1, ϕ〉 ≡ − 1

k!

∫ ∞

0
log(t)ϕ(k+1)(t) dt.

To assign a distribution to the function fn(t) introduced in (7), we first define recursively the
kth integral fn,k(t) of fn(t) by fn,0(t) ≡ fn(t) and, for k = 0, 1, 2, . . . , n/s − 1 (with n being
a multiple of s),

fn,k+1(t) ≡ −
∫ ∞

t

fn,k(u) du = (−1)k+1

k!

∫ ∞

t

(u − t)kfn(u) du. (8)

For β 	= 1/s, it is trivial to show that fn,n/s(t) is bounded on [0, T ] for any T > 0 and isO(t−β)

as t → ∞. For β = 1/s we have fn,n/s(t) = O(t−1/s) as t → ∞ and fn,n/s(t) = O(log(t))

as t → 0+. Therefore, for 0 < Re β � 1/s we can define the distribution associated with
fn(t) by

〈fn, ϕ〉 ≡ (−1)n/s〈fn,n/s, ϕ
(n/s)〉 ≡ (−1)n/s

∫ ∞

0
fn,n/s(t)ϕ

(n/s)(t) dt.

Once we have assigned a distribution to each function involved in the identity (7), we are
interested in finding an identity between these distributions. In fact, this relation is established
in the following two lemmas.

Lemma 1. For 0 < Re β < 1/s, s ∈ N, n � K + 1, and n = s, 2s, 3s, . . . , the identity

f =
n−1∑
k=K

akt−k/s−β +
n/s−1∑
k=0

(−1)k

k!
M[f ; k + 1]δ(k) + fn
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holds for any function ϕ ∈ S, where δ is the delta distribution in the origin and M[f ; k + 1]
denotes de Mellin transform of f (t):

∫∞
0 t kf (t) dt , or its analytic continuation.

Proof. It is a trivial generalization of lemma 1 in [12] from real to complex values of β. �

Lemma 2. For Re β = 1/s, s ∈ N, n � K + 1 and n = s, 2s, 3s, . . . , the identity

f =
n−1∑
k=K

akt−k/s−β +
n/s−1∑
k=0

b(k+1)sδ
(k) + fn

holds for any rapidly decreasing function ϕ ∈ S, where, for n = 0, s, 2s, . . .

bn+s = (−1)n/s

(n/s)!

∫ 1

0
tn/sfn(t) dt +

∫ ∞

1
tn/sfn+s(t) dt

+
s−2∑
k=0

(n/s)!an+k

(k/s + β − 1)n/s+1
+

n/s+1∑
k=1

n+s−1∑
j=n

(n/s − k + 2)k−1aj

(j/s + β − k)k

 (9)

= (−1)n/s

(n/s)!

M[f ; n/s + 1] +
an+s−1

1/s − β
+

s−2∑
k=0

[
(n/s)!

(k/s + β − 1)n/s+1

− 1

k/s + β − 1

]
an+k +

n/s+1∑
k=1

n+s−1∑
j=n

(n/s − k + 2)k−1aj

(j/s + β − k)k

 (10)

if Im β 	= 0, or

bn+s = (−1)n/s

(n/s)!

∫ 1

0
tn/sfn(t) dt +

∫ ∞

1
tn/sfn+s(t) dt

+
s−2∑
k=0

(n/s)!an+k

((k + 1)/s − 1)n/s+1
+

n/s∑
k=1

n+s−1∑
j=n

(n/s − k + 2)k−1aj

((j + 1)/s − k)k

 (11)

= (−1)n/s

(n/s)!

 lim
z→n/s

[
M[f ; z + 1] +

an+s−1

z − n/s

]
+

s−2∑
k=0

[
(n/s)!

((k + 1)/s − 1)n/s+1

− 1

(k + 1)/s − 1

]
an+k +

n/s∑
k=1

n+s−1∑
j=n

(n/s − k + 2)k−1aj

((j + 1)/s − k)k

 (12)

if Im β = 0.

Proof. Let f0(t) ≡ f (t) −∑−1
k=K akt

−k/s−β . Then, for n = 0, s, 2s, . . .

fn+s(t) = fn(t) −
n+s−1∑
k=n

ak

tk/s+β

and

fn+s,n/s(t) = fn,n/s(t) − (−1)n/s

s−1∑
k=0

an+k

(k/s + β)n/s

1

t k/s+β
.
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From this it follows, by integration, that∫ t

0
fn,n/s(u) du = fn+s,n/s+1(t) + (−1)n/san+s−1gn/s(β, t)

− (−1)n/s

s−2∑
k=0

an+kt
1−(k/s+β)

(k/s + β − 1)n/s+1
+ bn+s

where

gn(β, t) ≡
{

log t/n! if Im β = 0
−t−i Im β/(i Im β)n+1 if Im β 	= 0

and we have defined the integration constant

bn+s ≡ − lim
t→0

[fn+s,n/s+1(t) + (−1)n/san+s−1gn/s(β, t)].

From here, the proof is the same as the proof of lemma 2 in [12], replacing log t by
(n/s)!gn/s(β, t) and (k + 1)/s by k/s + β in that proof. �

To apply lemmas 1 and 2 to the integral (2) we choose ϕ(t) = e−zt , which belong to S
for Re z � 0. We will also need the following lemma.

Lemma 3. Let f (t) verify (7). Then, for 0 < Re β � 1, k = 0, 1, 2, . . . and n = s, 2s, 3s, . . .

the following identities hold:

〈f, ϕ〉 =
∫ ∞

0
f (t) e−zt dt

〈δ(k), ϕ〉 = zk

〈t−k/s−β, ϕ〉 = 	(1 − k/s − s)zk/s+β−1

〈t−k−1, ϕ〉 = (−1)k+1

k!
(γ + log z)zk

〈fn,n/s, ϕ
(n/s)〉 = (−1)n/szn/s

∫ ∞

0
fn,n/s(t) e−zt dt.

Proof. It is a straightforward generalization of the analogue equations given in [17, chapter 6,
section 5] from real to complex values of β. �

With these preparations, we are now able to obtain asymptotic expansions of the integrals
(2) for small z in the following two theorems.

Theorem 1. Let f (t) be a locally integrable function on [0,∞) which satisfies (7) with
β 	= 1/s. Then, for Re z > 0, and n = s, 2s, 3s, . . .∫ ∞

0
f (t) e−zt dt =

−1∑
k=K

ak	(1 − k/s − β)zk/s+β−1

+
n/s−1∑
k=0

zk

Mk +
s−1∑
j=0

	(1 − k − j/s − β)ask+j z
β+j/s−1

 + Rn,s(z) (13)

where

Mk ≡
{
(−1)kM[f ; k + 1]/k! if Re β 	= 1/s

b(k+1)s if Re β = 1/s

and, for k = 0, 1, 2, . . . , the coefficients b(k+1)s are given by (9) or (10).
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The remainder term is defined by

Rn,s(z) ≡ zn/s

∫ ∞

0
fn,n/s(t) e−zt dt (14)

where fn,n/s(t) is defined in (8).

Proof. For Re β 	= 1/s it follows from lemmas 1 and 3. For Re β = 1/s it follows from
lemmas 2 and 3, and using formula

〈t−k/s−β, ϕ〉 = 1

(ν)[k/s]
〈t−ν, ϕ([k/s])〉 if k/s /∈ N (15)

with ν ≡ k/s + β − [k/s]. �

Theorem 2. Let f (t) be a locally integrable function on [0,∞) which satisfies (7) with
β = 1/s. Then, for Re z > 0 and n = s, 2s, 3s, . . .∫ ∞

0
f (t) e−zt dt =

−1∑
k=K

ak	(1 − (k + 1)/s)z(k+1)/s−1

+
n/s−1∑
k=0

zk

as(k+1)−1
(−1)k+1

k!
(log z + γ ) + b(k+1)s

×
s−2∑
j=0

ask+j	(1 − k − (j + 1)/s)z(j+1)/s−1

 + Rn,s(z) (16)

where γ is the Euler constant and, for k = 0, 1, 2, . . . , the coefficients b(k+1)s are given by
(11) or (12).

The remainder term Rn,s(z) is given in (14).

Proof. From lemmas 2 and 3 and formula

〈t−(k+1)/s , ϕη〉 = −1

((k + 1)/s − 1)!
〈log t, ϕ((k+1)/s)

η 〉 if (k + 1)/s ∈ N.

or formula (15) with β = 1/s if (k + 1)/s /∈ N, we immediately obtain formula (16) with
Rn,s(z) given in (14). �

2.2. Error bounds

In the following theorem we show that expansions (13) and (16) are not only formal, but also
true asymptotic expansions for small z.

Theorem 3. In the region of validity of expansions (13) and (16), the remainder term Rn,s(z)

verifies

|Rn,s(z)| � Cn|z|n/s+Re β−1 (17)

if s > 1 or 0 < Re β < 1 and

|Rn,s(z)| � Cn|z|n|log z| (18)

if s = Re β = 1, where the constants Cn are independent of |z| (it may depend on the remaining
parameters of the problem).

Proof. On one hand, fn(t) = O(t−n/s−β) for t → ∞ (with 0 < Re β � 1/s) then, there is a
certain t0 ∈ (0,∞) and a constant C1,n such that |fn(t)| � C1,nt

−n/s−Re β ∀ t ∈ [t0,∞).
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Introducing this bound in definition (8) of fn,n/s(t) we obtain the bound |fn,n/s(t)| �
C2,nt

−Re β ∀ t ∈ [t0,∞), where C2,n is a certain positive constant and 0 < Re β � 1/s. On the
other hand, fn,n/s(t) is bounded on any compact interval in [0,∞) for β 	= 1/s and fn,n/s(t) is
bounded on any compact interval in (0,∞) and O(log t) as t → 0+ for Re β = s = 1. Then,
∀ t ∈ [0, t0], |fn,n/s(t)| � C3,nt

−Re β for 0 < Re β < 1 and |fn,n(t)| � C3,n(| log t | + 1) for
Re β = s = 1, where C3,n is a certain positive constant.

If we divide the integration interval [0,∞) in the definition (14) of Rn,s(z) at the point t0
and introduce these bounds in each of the intervals [0, t0] and [t0,∞), we obtain bounds (17)
and (18). �

The bounds given in theorem 3 are not useful for numerical computations unless
we are able to calculate the constants Cn in terms of the dates of the problem. The
property fn(t) = O(t−n/s−β) when t → ∞ implies that ∃ t0 > 0 and cn > 0, |fn(t)| �
cnt

−n/s−Re β ∀ t ∈ [t0,∞). The following two propositions show that, if the bound
|fn(t)| � cnt

−n/s−Re β holds ∀ t ∈ [0,∞) then, the constants Cn in theorem 3 can be calculated
in terms of the constant cn.

Proposition 1. If, for s > 1 or 0 < Re β < 1, the remainder fn(t) in expansion (7) of
the function f (t) satisfies the bound |fn(t)| � cnt

−n/s−Re β ∀ t ∈ [0,∞) for some positive
constant cn, then the remainder Rn,s(z) in expansion (13) satisfies

|Rn,s(z)| � cnπ

sin(πRe β)	(n/s + Re β)
|z|n/s+Re β−1. (19)

Proof. Introducing the bound |fn(t)| � cnt
−n/s−Re β in the definition (8) of fn,n/s(t) we obtain

|fn,n/s(t)| � cn	(Re β)

	(n/s + Re β)tRe β
∀ t ∈ [0,∞).

Introducing this bound in definition (14) of Rn,s(z) we obtain (19). �

Proposition 2. If, for s = Re β = 1, each remainder fn(t) in expansion (7) of the function
f (t) satisfies the bound |fn(t)| � cnt

−n−1,∀ t ∈ [0,∞) for some positive constant cn, then
the remainder Rn,s(z) in expansions (13) satisfies

|Rn,1(z)| � c̄nπ

	(n + 1/2)
|z|n−1/2 (20)

where c̄n ≡ Max{cn, cn−1 + |an−1|} and

|Rn,1(z)| �
{

1

(n − 1)!
[(cn−1 + |an−1|)ε + cn] +

cn

n!

(z, ε)

}
|z|n (21)

where ε is an arbitrary positive number, and


(z, ε) ≡


e−1 − log(εRe z) if εRe z < 1
e−εRe z

εRe z
if εRe z � 1.

(22)

For small enough z and fixed n, the optimum value for ε is given approximately by

ε = cn

n(cn−1 + |an−1|) . (23)

Proof. From |fn−1(t)| � cn−1t
−n ∀ t ∈ [0,∞) and fn(t) = fn−1(t) − an−1t

−n we obtain
|fn(t)| � (cn−1 + |an−1|)t−n ∀ t ∈ [0,∞). To obtain bound (21) we divide the integral defining
fn,n(t) in (8) by a fixed point u = ε � t and use the bound |fn(t)| � (cn−1 + |an−1|)t−n in
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Im(w)

Re(w)

u

r
σ

σ
ξ(u)

Figure 1. Analyticity region W for the function g(w) considered in lemma 4. The integration
variable u in (8) is real and unbounded and therefore, the analyticity region for g(w) in (26) must
contain the positive real axis. The circle of radius r centred at ξ(u), with 0 < ξ(u) < u, used in
the proof of lemma 4 must be contained in this region and therefore, r < σ .

the integral over [t, ε] and the bound |fn(t)| � cnt
−n−1 in the integral over [ε,∞). Using

u − t � u in the integral over [t, ε] we obtain

|fn,n(t)| � 1

(n − 1)!

[
(cn−1 + |an−1|) log

(ε

t

)
+

cn

ε

]
∀ t ∈ [0, ε] ε > 0. (24)

On the other hand, ∀ t ∈ [0,∞) we introduce the bound |fn(t)| � cnt
−n−1 in the integral

definition of fn,n(t) and perform the change of variable u = tv. We obtain

|fn,n(t)| � cn

n!

1

t
∀ t ∈ [0,∞). (25)

If we divide the integral on the right-hand side of (14) at the point t = ε and use bound
(25) in the integral over [ε,∞) and bound (24) in the integral over [0, ε], we obtain (21) and
(22). For small z and fixed n, this bound takes its optimum value, approximately, for ε given
in (23).

Now we derive (20). From |fn−1(t)| � cn−1t
−n and fn(t) = fn−1(t) − an−1t

−n ∀ t ∈
[0,∞), n ∈ N, we obtain |fn(t)| � (cn−1 + |an−1|)t−n ∀ t ∈ [0,∞). Then, we have both
|fn(t)| � cnt

−n−1/2 if t � 1 and |fn(t)| � (cn−1 + |an−1|)t−n−1/2 if t � 1. Therefore,
|fn(t)| � c̄nt

−n−1/2 ∀ t ∈ [0,∞). Then, fn(t) satisfies the bound required in proposition 1
with s = 1, Re β = 1/2 and cn replaced by c̄n. Repeating now the calculations of the proof of
proposition 1, we obtain (20). �

The following lemma introduces a family of functions f (t) which verify the bound
|fn(t)| � cnt

−n/s−Re β ∀ t ∈ [0,∞). Moreover, for these functions f (t), the constants cn can
be easily obtained from f (t).

Lemma 4. Suppose that f (t) verifies (7) and consider the function g(u) ≡ u−βsf (u−s) −∑−1
k=K aku

k . If g(w) is a bounded analytic function in the region W of the complex w-plane
comprised by the points situated at a distance <σ from the positive real axis (see figure 1),
then,

|fn(t)| � Cr−nt−n/s−Re β

where C is a bound of |g(w)| in W and 0 < r < σ .
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Proof. From asymptotic expansion (7) and the Lagrange formula for the remainder in the
Taylor expansion of g(u) at u = 0, we have

g(u) =
n−1∑
k=0

aku
k + Rn(u)

where

Rn(u) = 1

n!

dng(u)

dun

∣∣∣∣
u=ξ

un ξ ∈ (0, u).

Using the Cauchy formula for the derivative of an analytic function,

dng(u)

dun
= n!

2π i

∫
C

g(w)

(w − ξ)n+1
dw (26)

where C is a circle of radius r around ξ contained in the region W . Then, for fixed ξ and r,
performing the change of variable w = ξ + r eiθ , and using |g(ξ + r eiθ )| � C for θ ∈ [0, 2π)

with C independent of θ , r and ξ , we obtain the desired result. �

Lemma 5. If expansion (7) verifies the error test, then

|fn(t)| � |an|t−n/s−Re β and |fn(t)| � |an−1|t−(n−1)/s−Re β.

Proof. A proof of the first inequality can be found in [15, p 68]. The second inequality follows
from the first one, from sign(fn(t)) 	= sign(fn−1(t)) and

fn(t) = fn−1(t) − an−1

t (n−1)/s+β
. �

Corollary 1. If f (t) verifies the hypotheses of lemma 4, then Rn,s(z) satisfies the bounds given
in proposition 1 or 2 with cn = Cr−n. Moreover, the expansions given in theorems 1 and 2
are convergent.

Corollary 2. If expansion (7) of f (t) verifies the error test, then Rn,s(z) satisfies the bounds
given in proposition 1 or 2 replacing cn by |an| and cn−1 by 0. Moreover, the expansions given
in theorems 1 and 2 are convergent when limn→∞ an(ez)

n/s(n/s)1/2−n/s−Re β = 0.

3. Convergent expansions of thermonuclear functions

Asymptotic expansions in powers of z̃ of I1(z̃), . . . , I6(z̃) may be obtained by applying
theorem 1 or 2 to Lf1(z̃), . . . ,Lf6(z̃) respectively. Error bounds for these expansions and their
convergence follow from proposition 1 or 2 or corollary 1 or 2.

We consider in this section the integrals Lf1(z̃),Lf2(z̃),Lf3(z̃) and Lf5(z̃) (Lf2(z̃),Lf3(z̃)

and Lf5(z̃) only in the case ρ ∈ N). Integrals Lf2(z̃),Lf3(z̃),Lf4(z̃),Lf5(z̃) and Lf6(z̃) in the
general case ρ ∈ Q+ are relegated to a forthcoming paper.

3.1. Nonresonant case

We rewrite the rational number ρ defining the function f1(t) in (3) as ρ = ρ̄/δ, with ρ̄, δ ∈ N,
δ and ρ̄ being relative primes:

f1(t) = tν e−t−δ/ρ̄

. (27)
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Then, this function satisfies

f1(t) =
n−1∑
k=K

Ak−K

tk/ρ̄+β
+ fn(t) Ak ≡


(−1)(k/δ)

(k/δ)!
if k = δ̇

0 if k 	= δ̇

(28)

where K ≡ Int (−ρ̄ν), β ≡ Fr(−ρ̄ν)/ρ̄ and fn(t) = O(t−n/ρ̄−β) when t → ∞.

Corollary 3. For ρ̄ν /∈ Z, z > 0 and n, ρ̄, δ ∈ N with n being a multiple of ρ̄ and n − K

being a multiple of δ,

Lf1(z) =
−K−1∑
k=0

Ak	

(
ν + 1 − k

ρ̄

)
zk/ρ̄−ν−1 +

n/ρ̄−1∑
k=0

zk

 (−1)kρ̄

δk!
	

(
− ρ̄(ν + k + 1)

δ

)

+
ρ̄−1∑
j=0

Aρ̄k+j−K	

(
1 − k − j

ρ̄
− β

)
zβ+j/ρ̄−1

 + Rn(z). (29)

A bound for the remainder is given by

|Rn(z)| � |An−K |π
sin(πβ)	(n/ρ̄ + β)

zn/ρ̄+β−1. (30)

Expansion (29) is convergent.

Proof. Apply theorem 1 to the integral (2) with s = ρ̄, f (t) = f1(t) given in (27), ak = Ak−K

given in (28) and β and K given above. After the change of variable t = u−ρ̄/δ , the Mellin
transform of f1(t) reads

M[f1; k + 1] = ρ̄

δ

∫ ∞

0
u−ρ̄(ν+k+1)/δ−1 e−u du = ρ̄

δ
	

(
− ρ̄(ν + k + 1)

δ

)
. (31)

Expansion (29) follows after introducing (31) in theorem 1.
Now we derive the bound (30). We write fn(t) in (28) as

fn(t) = tνrn−K(t) (32)

where rn(t) represents the nth remainder of the Taylor expansion of e−t−δ/ρ̄

in powers of t−δ/ρ̄ :

e−t−δ/ρ̄ = 1 − |Aδ|
t δ/ρ̄

+
|A2δ|
t2δ/ρ̄

− · · · + (−1)[(n−1)/δ] |A[(n−1)/δ]δ|
t [(n−1)/δ]δ/ρ̄

+ rn(t) (33)

for n = 1, 2, 3, 4, . . . and [·] is the integer part function. Using the Lagrange formula for the
remainder rn(t), we find that two consecutive error terms, rn(t) and rn+δ(t), have opposite
sign: sign(rn(t)) = (−1)[(n−1)/δ]+1. Then, expansion (33) verifies the error test and we have
(lemma 5):

|rn(t)| � |A[(n−1)/δ]δ+δ|
t ([(n−1)/δ]δ+δ)/ρ̄

. (34)

Using that n − K is a multiple of δ, from (32) and (34) we obtain |fn(t)| � |An−K |t−n/ρ̄−Re β .
Then, from corollary 2, bound (30) follows from proposition 1 with cn = |An−K |. From the
second formula in (28) and (30) we have limn→∞ Rn(z) = 0. �
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Corollary 4. For νρ̄ ∈ Z, z > 0, ρ̄, δ ∈ N and n = ρ̄δ, 2ρ̄δ, 3ρ̄δ, . . .

Lf1(z) =
−1∑

k=−ρ̄ν−1

Ak−α+3	(1 − (k + 1)/ρ̄)z(k+1)/ρ̄−1

+
n/ρ̄−1∑
k=0

zk

Aρ̄(ν+k+1)

(−1)k+1

k!
(log z + γ ) +

(−1)k

k!
Bk

+
ρ̄−2∑
j=0

Aρ̄k+j+ρ̄ν+1	(1 − k − (j + 1)/ρ̄)z(j+1)/ρ̄−1

 + Rn(z) (35)

where the coefficients Ak are given in (28) and the coefficients Bk are given by

Bk ≡ ρ̄(−1)ρ̄(ν+k+1)/δ

δ (ρ̄(ν + k + 1)/δ)!
ψ

(
ρ̄(ν + k + 1)

δ
+ 1

)

+
ρ̄−2∑
j=0

[
k!

((j + 1)/ρ̄ − 1)k+1
− 1

(j + 1)/ρ̄ − 1

]
Aρ̄k+j+ρ̄ν+1

+
k∑

i=1

ρ̄(k+1)−1∑
j=kρ̄

(k − i + 2)i−1Aj+ρ̄ν+1

((j + 1)/ρ̄ − i)i
(36)

where ψ is the digamma function ([1], equation (6.3.1)).
For ρ̄ > 1, a bound for the remainder is given in (30), whereas for ρ̄ = β = 1, two

bounds are given by

|Rn(z)| � c̄nπ

	(n + 1/2)
zn−1/2 (37)

and

|Rn(z)| �
{

1

(n − 1)!
[|An+ν |ε + |An+ν+1|] +

|An+ν+1|
n!


(z, ε)

}
zn (38)

where c̄n = Max{|An+ν+1|, |An+ν |},
(z, ε) is defined in (22) and ε is an arbitrary positive
number whose optimum value is given by |An+ν+1|/(n|An+ν |). Expansion (35) is convergent.

Proof. To obtain expansion (35) we apply theorem 2 to the integral (2) with s = ρ̄, f (t) =
f1(t) given in (27), β = 1/ρ̄,K = −ρ̄ν − 1 and ak = Ak+ρ̄ν+1. The coefficient Bk in (35)
is b(k+1)ρ̄ given by (12) with ak = Ak+ρ̄ν+1. The Mellin transform in formula (12) is given by
(31) with k replaced by z. When z → n, there are two singular terms in the limit of formula
(12): Aρ̄(n+1+ν)/(z − n) and 	 (−ρ̄(ν + z + 1)/δ). Setting z = n + η, expanding these terms at
η = 0 and using (28)(b) we obtain (36).

For ρ̄ > 1, bound (30) is obtained as in corollary 3. For ρ̄ = β = 1, the bounds (37) and
(38) are obtained from proposition 2 and corollary 2. From (37) we have limn→∞ Rn(z) = 0.

�

3.2. Nonresonant case with depleted tail

The function f3(t) in (5) satisfies

f3(t) =
n−1∑
k=K

Ak−K

tk/ρ+β
+ fn(t) (39)



2650 C Ferreira and J L López

where K ≡ Int (ν + ρ + 1), β ≡ Fr(ν + ρ + 1)/ρ and the coefficients Ak are

Ak ≡
k∑

j=0

(−a)k−j

(k − j)!
Bj Bj ≡


(−b)(j/δ)

(j/δ)!
if j = δ̇

0 if j 	= δ̇

(40)

and fn(t) = O(t−n/ρ−β) when t → ∞.

Corollary 5. For ν /∈ Z, z > 0 and n, ρ, δ ∈ N with n being a multiple of ρ and n − K being
a multiple of δ,

Lf3(z) =
−K−1∑
k=0

Ak	

(
− (k + ν + 1)

ρ

)
z(k+ν+1)/ρ +

n/ρ−1∑
k=0

zk

 (−1)k

k!
ρMk

+
ρ−1∑
j=0

Aρk+j−K	

(
1 − k − j

ρ
− β

)
zβ+j/ρ−1

 + Rn(z) (41)

where the coefficients Mk are given by

Mk ≡


	(ν − ρk + 1)(a + b)ρk−ν−1 if δ = 1
∞∑

j=0

(−a)j

δj !
	

(
j − kρ + ν + 1

δ

)
b(kρ−j−ν−1)/δ if δ > 1.

(42)

A bound for the remainder is given by

|Rn(z)| � πcn

sin(πβ)	(n/ρ + β)
zn/ρ+β−1 (43)

where we can take cn = |An−K | if δ is odd. In any case, we can take cn = ea+b. Expansion
(41) is convergent.

Proof. To obtain expansion (41), we apply theorem 1 to the integral (2) with s = ρ, f (t) =
f3(t) given in (5), ak = Ak−K given in (40) and β and K as given above. After the change of
variable t = u−ρ , the Mellin transform of f3(t) reads

M[f3; k + 1] = ρ

∫ ∞

0
uν−ρk e−buδ

e−au du.

For δ = 1, this is an elementary integral given by the first line in the right hand side of (42). If
δ > 1 we expand e−au in powers of u and interchange sum and integral to obtain the second
line in the right hand side of (42).

Now we obtain bound (43). We write fn(t) in (39) as

fn(t) = t−(ν+1)/ρ−1rn−K(t)

where rn(t) is the remainder of the Taylor expansion of e−at−1/ρ

e−bt−δ/ρ

in powers of t−1/ρ :

rn−K(t) =
[(n−K−1)/δ]∑

j=0

δ−1∑
l=0

(−a)jδ+l

(jδ + l)!
t−(jδ+l)/ρr2

n−K−jδ−l (t) + r1
n−K(t)r2

0 (t)



Analytic expansions of thermonuclear reaction rates 2651

where r1
n(t) and r2

n(t) are, respectively, the remainders of the expansions of e−at−1/ρ

and e−bt−δ/ρ

in powers of t−1/ρ :

e−at−1/ρ =
n−1∑
k=0

(−a)k

k!
t−k/ρ + r1

n(t) (44)

e−bt−δ/ρ =
n−1∑
k=0

bkt
−k/ρ + r2

n(t) bk ≡


(−b)(k/δ)

(k/δ)!
if k = δ̇

0 if k 	= δ̇.

We write n − K = mδ for some m ∈ N. Therefore, r2
n−K−jδ−l (t) = r2

(m−j)δ(t) for l =
0, 1, 2, . . . , δ − 1. Using the fact that sign

(
r2
n(t)

) = (−1)
(n−1)/δ�+1 (see paragraph following
equation (33)), we conclude that sign

(
r2
n−K−jδ−l (t)

) = (−1)m−j for l = 0, 1, 2, . . . , δ − 1.
Defining

ãj ≡ (−a)jδt−jδ/ρ

δ−1∑
l=0

(−at−1/ρ)l

(jδ + l)!

and using the fact that
∑δ−1

l=0 (−at−1/ρ)l/(jδ + l)! > 0, we have sign(ãj ) = (−1)jδ = (−1)j

for odd δ. Then, taking into account that r0(t) > 0 and sign
(
r1
n−K(t)

) = (−1)mδ = (−1)m,
we have, for m = 1, 2, 3, . . . ,

sign(rn−K(t)) = sign

[(n−K−1)/δ]∑
j=0

ãj r
2
n−K−jδ(t) + r1

n−K(t)r2
0 (t)

 = (−1)m.

We conclude that the function f3(t) verifies the error test for odd δ and, from corollary 2, we
obtain (43) with cn = |An−K |.

For any δ, by corollary 1, the remainder in expansion (41) verifies the bounds given in
propositions 1 and 2 with cn = Cr−n, where C is a bound of g(w) = e−aw e−bwδ

in the region
W considered in lemma 4 and 0 < r < ∞. We take r = 1 and then C = ea+b. Therefore,
bound (43) holds with cn = ea+b and, from this bound, we have limn→∞ Rn(z) = 0. �

Corollary 6. For ν ∈ Z, z > 0, ρ, δ ∈ N and n = ρδ, 2ρδ, 3ρδ, . . .

Lf3(z) =
−1∑

k=ν+ρ

Ak−ν−ρ	(1 − (k + 1)/ρ)z(k+1)/ρ−1

+
n/ρ−1∑
k=0

zk

Aρk−ν−1
(−1)k+1

k!
(log z + γ ) +

(−1)k

k!
Ck

+
ρ−2∑
j=0

Aρk+j−ν−ρ	(1 − k − (j + 1)/ρ)z(j+1)/ρ−1

 + Rn(z) (45)

where the coefficients Ak are given in (40) and the coefficients Ck are given by

Ck ≡ ρC ′
k +

ρ−2∑
j=0

[
k!

((j + 1)/ρ − 1)k+1
− 1

(j + 1)/ρ − 1

]
Aρk+j−ν−ρ

+
k∑

i=1

ρ(k+1)−1∑
j=kρ

(k − i + 2)i−1Aj−ν−ρ

((j + 1)/ρ − i)i
(46)
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where

C ′
k ≡

ρk−ν−1∑
j=0;j−ρk+ν+1	=δ̇

(−a)j

j !δ
b(ρk−j−ν−1)/δ	

(
j − ρk + ν + 1

δ

)

+
ρk−ν−1∑

j=0;j−ρk+ν+1=δ̇

(−a)j

j !δ
Bρk−ν−1−jψ

(
ρk − ν − 1 − j

δ
+ 1

)

+
∞∑

j=0

(−1)ρk−ν+j aρk−ν+j

(ρk − ν + j)!δ
	

(
j + 1

δ

)
b−(j+1)/δ (47)

and Bj are defined in (40).
For ρ > 1, a bound for the remainder is given by (43) with cn = ea+b for any δ or

cn = |An−ν−ρ | for odd δ. For ρ = β = 1, two bounds are given by

|Rn(z)| � c̄nπ

	(n + 1/2)
zn−1/2 (48)

and, for any ε > 0,

|Rn(z)| �
{

1

(n − 1)!
[(cn−1 + |An−ν−ρ−1|)ε + cn] +

cn

n!

(z, ε)

}
zn (49)

where 
(z, ε) is defined in (22). In these formulae we can take, for odd δ, cn =
|An−ν−ρ |, cn−1 = 0 and c̄n = Max{|An−ν−ρ |, |An−ν−ρ−1|}. For any δ we can take
c̄n = Max{ea+b, ea+b + |An−ν−ρ−1|} and cn = cn−1 = ea+b. Expansion (45) is convergent.

Proof. To obtain expansion (45) we apply theorem 2 to integral (2) with s = ρ, f (t) = f3(t)

given in (5), β = 1/ρ,K = ν +ρ and ak = Ak−ν−ρ . The coefficient Ck in (45) is b(k+1)ρ given
by (12) with an = An−ν−ρ . The Mellin transform in formula (12) is given by (42) replacing
k by z. When z → n, there are two singular terms in the limit in (12): Aρn−ν−1/(z − n) and
	 ((j − ρz + ν + 1)/δ) when (j −nρ + ν + 1)/δ − 1 ∈ Z−. Setting z = n + η, expanding these
terms at η = 0 and using (40) we obtain (46) and (47).

For ρ > 1, the error bound (43) is obtained as in corollary 5. For ρ = β = 1, bounds
(37) and (38) are obtained as in corollary 4: using corollary 2 for odd δ and corollary 1 for
any δ. Using any of these bounds we have limn→∞ Rn(z) = 0. �

3.3. Resonant case

The function f5(t) given in (6) satisfies

f5(t) =
n−1∑
k=K

Ak−K

tk/ρ+β
+ fn(t) Ak ≡ (−1)k

sin θ

k∑
j=0

ak−j

(k − j)!

sin[(j + 1)θ ]

(b2 + g2)j/2+1
(50)

where K ≡ Int (ν + ρ + 1), β ≡ Fr(ν + ρ + 1)/ρ, θ ≡ arctan(g/b) and fn(t) = O(t−n/ρ−β)

when t → ∞.

Corollary 7. For ν /∈ Z, z > 0, ρ ∈ N and n = ρ, 2ρ, 3ρ, . . .

Lf5(z) =
−K−1∑
k=0

Ak	(−(k + ν + 1)/ρ)z(k+ν+1)/ρ +
n/ρ−1∑
k=0

zk

 (−1)kρ

gk!
Mk

+
ρ−1∑
j=0

Aρk+j−K	(1 − k − j/ρ − β)zβ+j/ρ−1

 + Rn(z) (51)
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where the coefficients Mk are given by

Mk ≡ 	 (ν + 1 − ρk) Im[(b − ig)ν−ρk ea(b−ig)	(ρk − ν, a(b − ig))] (52)

and 	(z, x) denotes the incomplete gamma function ([1], equation (653)). A bound for the
remainder is given by

|Rn(z)| � πcn

sin(πβ)	(n/ρ + β)
zn/ρ+β−1 (53)

where

cn = 1

sin θ

n−1∑
k=0

an−k

(n − k)!

|sin[(k + 1)θ ]|
(b2 + g2)k/2+1

+
2

g2(b2 + g2)n/2
. (54)

Expansion (51) is convergent.

Proof. We apply theorem 1 to integral (2) with s = ρ, f (t) = f5(t) given in (6), ak = Ak−K

given in (50) and β and K as given above. The Mellin transform of f5(t) reads

M[f5; k + 1] = ρ

∫ ∞

0

uν−ρk

g2 + (b − u)2
e−au du = ρ

w2 − w1
[I (w1) − I (w2)]

where w1 ≡ b + ig,w2 ≡ b − ig and

I (w) ≡
∫ ∞

0

uν−ρk

u + w
e−au du = 	(ν + 1 − ρk)wν−ρk eaw	(ρk − ν, aw)

where we have used [16, p 325, equation (13)]. Then (51) follows from theorem 1 after
straightforward computations. To obtain the error bound (53) we apply proposition 1 to the
function f5(t). We write

fn(t) = t−(ν+1)/ρ−1rn−K(t) rn(t) ≡
n−1∑
k=0

c2
k t

−k/ρr1
n−k(t) + r2

n(t)r1
0 (t) (55)

where r1
n(t) is the remainder in expansion (44) of e−at−1/ρ

in powers of t−1/ρ and r2
n(t) is the

remainder in the expansion of [(b − t−1/ρ)2 + g2]−1 in powers of t−1/ρ :

1

(b − t−1/ρ)2 + g2
=

n−1∑
k=0

c2
k t

−k/ρ + r2
n(t) c2

k ≡ (−1)k sin[(k + 1)θ ]

(b2 + g2)k/2+1 sin θ
.

Expansion (44), as well as expansion (33), satisfies the error test and then, from lemma 5,∣∣r1
n(t)

∣∣ � ant−n/ρ/n!. On the other hand

1

(b − u)2 + g2
= 1

u − w1

1

u − w2
and

1

u − w
= − 1

w

n−1∑
k=0

( u

w

)k

+
(u/w)n

u − w
.

Therefore,

r2
n(t) = − 1

w1

n−1∑
k=0

(
u

w1

)k
(u/w2)

n−k

u − w2
+

(u/w1)
n

u − w1

1

u − w2

= un

u − w2

[
1 − (w2/w1)

n

w2 − w1

1

wn
2

+
1

u − w1

1

wn
1

]
.

After trivial manipulations we obtain
∣∣r2

n(t)
∣∣ � 2g−2t−n/ρ(b2 + g2)−n/2. Collecting these

bounds for r1
n(t) and r2

n(t) in (55) we find

|rn(t)| �
[

n−1∑
k=0

∣∣c2
k

∣∣ an−k

(n − k)!
+

2

g2(b2 + g2)n/2

]
t−n/ρ.
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From proposition 1 we obtain (53) and (54) and limn→∞ Rn(z) = 0. �

Corollary 8. For ν ∈ Z, z > 0, ρ ∈ N and n = ρ, 2ρ, 3ρ, . . .

Lf5(z) =
−1∑

k=ν+ρ

Ak−ν−ρ	(1 − (k + 1)/ρ)z(k+1)/ρ−1

+
n/ρ−1∑
k=0

zk

Aρk−ν−1
(−1)k+1

k!
(log z + γ ) +

(−1)k

k!
Bk

+
ρ−2∑
j=0

Aρk+j−ν−ρ	(1 − k − (j + 1)/ρ)z(j+1)/ρ−1

 + Rn(z). (56)

The coefficients Ak are given in (50) and the coefficients Bk are

Bk ≡ ρB ′
k +

ρ−2∑
j=0

[
k!

((j + 1)/ρ − 1)k+1
− 1

(j + 1)/ρ − 1

]
Aρk+j−ν−ρ

+
k∑

i=1

ρ(k+1)−1∑
j=kρ

(k − i + 2)i−1Aj−ν−ρ

((j + 1)/ρ − i)i
(57)

where

B ′
k ≡ (−1)ρk−ν−1

(ρk − ν − 1)!

ψ(ρk − ν)

w2 − w1
[mk(w1) − mk(w2)] (58)

with

mk(w) ≡ wν−ρk

[
eaw	(ρk − ν) +

(aw)ρk−ν

ν − ρk
1F1(1, ρk + 1 − ν, aw)

]
(59)

where 1F1(a, b, z) denotes Kummer’s confluent hypergeometric function ([1], p 504,
equation (13.1.2)).

For ρ > 1, a bound for the remainder Rn(z) is given in (53) and (54). For ρ = β = 1,
two bounds are given by (48) and (49) with c̄n = Max{cn, cn−1 + |An−ν−ρ−1|} and cn given in
(54) for 
(z, ε) defined in (22). Expansion (56) is convergent.

Proof. To obtain expansion (56) we apply theorem 2 to integral (2) with s = ρ, f (t) = f5(t)

given in (6), β = 1/ρ,K = ν + ρ and ak = Ak−ν−ρ . The coefficients Bk in (56) are b(k+1)ρ

given by (12) with ak = Ak−ν+ρ . For k = 0, 1, 2, . . . , the Mellin transform in formula (12)
is given by (52) replacing k by z. When z → n, there are two singular terms in the limit
in (12): Aρn−ν−1/(z − n) and 	 (ν + 1 − ρz). Setting z = n + η, expanding these terms at
η = 0 and using (50) we obtain (57) –(59). The error bounds (48), (49) and (53) and (54) are
obtained as in corollary 7. From (53) and (54) we see that limn→∞ Rn(z) = 0. �

3.4. Nonresonant case with high-energy cut-off

The function f2(t) given in (4) satisfies

f2(t) =
n−1∑
k=K

Ak−K

tk/ρ+β
+ fn(t)

where K ≡ Int (ν + ρ + 1), β = Fr(ν + ρ + 1)/ρ and the coefficients Ak are defined by
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Ak ≡
k∑

j=0

Bk−jEj Bj ≡

(−(ν + 1)/ρ − 1

j/ρ

)
if j = ρ̇

0 if j 	= ρ̇

(60)

Ej =
j∑

i=0

(−ad)i

i!
bi,j−i bi,j ≡


(−i/ρ

j/ρ

)
if j = ρ̇

0 if j 	= ρ̇

(61)

and fn(t) = O(t−n/ρ−β) when t → ∞.

Corollary 9. For ν /∈ Z, z > 0, ρ ∈ N and n = ρ, 2ρ, 3ρ, . . .

Lf2(z) =
−K−1∑
k=0

Ak	

(
−k + ν + 1

ρ

)
z(k+ν+1)/ρ +

n/ρ−1∑
k=0

zk

(−1)kMk

+
ρ−1∑
j=0

Aρk+j−K	(1 − k − j/ρ − β)zβ+j/ρ−1

 + Rn(z). (62)

Coefficients Mk are given by

Mk ≡
∞∑

j=0

	((j + ν + 1)/ρ − k)

	((j + ν + 1)/ρ + 1)

(−ad)j

j !
. (63)

A bound for the remainder is given by

|Rn(z)| � Cπ

rn sin(πβ)	(n/ρ + β)
zn/ρ+β−1 (64)

where C is a bound of g(w) = (1 + wρ)−(ν+1)/ρ−1 e−adw(1+wρ)−1/ρ

in the region W considered
in lemma 4 with

0 < r < |sin(π/ρ)| if ρ � 3 and 0 < r < 1 if ρ = 1, 2. (65)

Expansion (62) is convergent.

Proof. To obtain expansion (62) we apply theorem 1 to integral (2) with s = ρ, f (t) = f2(t)

given in (4), ak = Ak−K given in (60) and (61) and β and K given above.
The Mellin transform of f2(t) reads

M[f2; k + 1] =
∫ ∞

0
t k(1 + t)−(ν+1)/ρ−1 e−ad(1+t)−1/ρ

dt.

Expanding e−ad(1+t)−1/ρ

in powers of (1 + t)−1/ρ and interchanging sum and integral we obtain

M[f2; k + 1] =
∞∑

j=0

(−ad)j

j !

∫ ∞

0
t k(1 + t)−(j+ν+1)/ρ−1 dt.

From here, (63) follows after straightforward computations.
On the other hand, by corollary 1, the remainder in expansion (62) verifies the bounds given

in propositions 1 and 2 with cn = Cr−n, where C is a bound of g(w) = w−ν−ρ−1f (w−ρ) =
(1 + wρ)−(ν+1)/ρ−1 e−adw(1+wρ)−1/ρ

in the region W considered in lemma 4. In that lemma
we must take 0 < r < σ = distance of the nearest ρ-root of −1 to the positive real axis.
Therefore, bounds (64) and (65) hold. From corollary 1 we have limn→∞ Rn(z) = 0. �
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Corollary 10. For ν ∈ Z, z > 0, ρ ∈ N and n = ρ, 2ρ, 3ρ, . . .

Lf2(z) =
−1∑

k=ν+ρ

Ak−ν−ρ	(1 − (k + 1)/ρ)z(k+1)/ρ−1

+
n/ρ−1∑
k=0

zk

Aρk−ν−1
(−1)k+1

k!
(log z + γ ) +

(−1)k

k!
Bk

+
ρ−2∑
j=0

Aρk+j−ν−ρ	(1 − k − (j + 1)/ρ)z(j+1)/ρ−1

 + Rn(z) (66)

where the coefficients Ak are given in (60) and the coefficients Bk are

Bk ≡ k!Ck +
ρ−2∑
j=0

[
k!

((j + 1)/ρ − 1)k+1
− 1

(j + 1)/ρ − 1

]
Aρk+j−ν−ρ

+
k∑

i=1

ρ(k+1)−1∑
j=kρ

(k − i + 2)i−1Aj−ν−ρ

((j + 1)/ρ − i)i
(67)

where

Ck ≡
ρk−ν−1∑

j=0;j+ν+1	=ρ̇

(−ad)j

j !

	 ((j + ν + 1)/ρ − k)

	 ((j + ν + ρ + 1)/ρ)

+
ρk−ν−1∑

j=0;j+ν+1=ρ̇

(−1)j+k−(j+ν+1)/ρ(ad)j

j !(k − (j + ν + 1)/ρ)!	((j + ν + 1)/ρ + 1)

× [ψ(k + 1) − ψ(k + 1 − (j + ν + 1)/ρ)]

+
∞∑

j=ρk−ν

(−ad)j

j !

	 ((j + ν + 1)/ρ − k)

	 ((j + ν + 1)/ρ + 1)
.

For ρ > 1, a bound for the remainder Rn(z) is given by (64) with β = 1/ρ and C and r
given there. For ρ = β = 1, two bounds are given by (48) and (49) with cn = Cr−n, c̄n =
Max{Cr−n, Cr−n+1 + |An−ν−ρ−1|} and C and r given in corollary 9. Expansion (66) is
convergent.

Proof. To obtain expansion (66) we apply theorem 2 to integral (2) with s = ρ, f (t) = f2(t)

given in (4), β = 1/ρ,K = ν + ρ and ak = Ak−ν−ρ . The coefficient Bk in (66) is b(k+1)ρ

given by (12) with ak = Ak−ν−ρ . The Mellin transform in formula (12) is given by (63) with k
replaced by z. When z → n, there are two singular terms in the limit of (12): Aρn−ν−1/(z−n)

and 	 ((j + ν + 1)/ρ − z) when (j + ν + 1)/ρ − n − 1 ∈ Z−. Setting z = n + η, expanding
these terms at η = 0 and using (60) and (61) we obtain (67).

The error bounds are obtained as in corollary 9. From corollary 1 we have
limn→∞ Rn(z) = 0. �

4. Numerical experiments

The following tables (tables 1–8) show numerical experiments about the approximation and
the accuracy of the error bounds supplied by corollaries 3–10. In these tables, the second
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Table 1. Approximation supplied by (29) and error bounds given by (30).

Parameter values: ν = 1
2 , δ = 1, ρ̄ = 3, n = 3, 6

First order Relative Relative Second order Relative Relative
z Lf1 (z) approximation error error bound approximation error error bound

0.1 17.5163009 18.073008 0.031 0.053 17.5176537 7.72 × 10−5 8.89 × 10−5

0.01 709.943936 712.372622 0.0034 0.0042 709.9444 6.52 × 10−7 6.94 × 10−7

0.001 25260.95627 25269.5468 3.4 × 10−4 3.7 × 10−4 25260.95642 5.996 × 10−9 6.16 × 10−9

0.0001 844353.3251 844381.777 3.37 × 10−5 3.5 × 10−5 844353.3251 5.76 × 10−11 5.83 × 10−11

0.00001 2.74011004 × 2.74011922 × 3.35 × 10−6 3.4 × 10−6 2.74011004 × 5.65 × 10−13 5.68 × 10−13

107 107 107

Table 2. Approximation supplied by (35) and error bounds given by Min{(37), (38)}.
Parameter values: ν = 1, δ = 1, ρ̄ = 1, n = 1, 2

First order Relative Relative Second order Relative Relative
z Lf1 (z) approximation error error bound approximation error error bound

0.5 2.7339389 2.5193579 0.08 0.15 2.717029 0.006 0.013
0.1 91.391428 91.324077 7.4 × 10−4 0.002 91.390435 1.0 × 10−5 3.4 × 10−5

0.05 381.709889 381.67065 1.0 × 10−4 3.5 × 10−4 381.709606 7.4 × 10−7 2.9 × 10−6

0.01 9902.485857 9902.475369 1.0 × 10−6 6.0 × 10−4 9902.485843 1.5 × 10−9 9.9 × 10−9

0.005 39802.82776 39802.82194 1.5 × 10−7 1.0 × 10−6 39802.827757 1.0 × 10−10 8.7 × 10−10

0.001 999003.628 999003.627 1.4 × 10−9 1.9 × 10−8 999003.628 1.9 × 10−13 3.0 × 10−12

Table 3. Approximation supplied by (41) and error bounds given by (43).

Parameter values: ν = −4.9, δ = 3, ρ = 2, a = 0.2, b = 1.7, n = 2, 8

First order Relative Relative Second order Relative Relative
z Lf3 (z) approximation error error bound approximation error error bound

0.1 77.6482713 93.66645 0.2 0.48 77.645714 3.29 × 10−5 2.2 × 10−4

0.05 316.159579 335.287252 0.06 0.16 316.159166 1.3 × 10−6 9.0 × 10−6

0.015 3436.34558 3464.26795 0.008 0.025 3436.34556 5.0 × 10−9 3.9 × 10−8

0.005 29661.49798 29703.24225 0.001 0.005 29661.49798 3.56 × 10−11 2.78 × 10−10

0.002 178048.65 178108.68 0.0003 0.001 178048.65 1.5 × 10−12 4.46 × 10−12

Table 4. Approximation supplied by (45) an error bounds given by (43).

Parameter values: ν = 0, δ = 3, ρ = 2, a = 1, b = 1, n = 6, 12

First order Relative Relative Second order Relative Relative
z Lf3 (z) approximation error error bound approximation error error bound

0.2 0.3255718 0.3404663 0.046 0.054 0.325571 7.8 × 10−7 9.0 × 10−7

0.1 0.4667515 0.469481 0.0058 0.0067 0.4667514 1.24 × 10−8 1.39 × 10−8

0.08 0.511643 0.513221 0.003 0.0034 0.511643 3.3 × 10−9 3.7 × 10−9

0.05 0.602377 0.6028736 0.0008 0.0009 0.602377 2.0 × 10−10 2.4 × 10−10

0.02 0.756695 0.756747 6.8 × 10−5 7.4 × 10−5 0.756695 1.15 × 10−12 1.22 × 10−12

0.005 0.923849 0.923851 1.8 × 10−6 1.88 × 10−6 0.923849 4.8 × 10−16 4.9 × 10−16
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Table 5. Approximation supplied by (51) and error bounds given by (53).

Parameter values: ν = −1.4, a = 0.2, ρ = 2, b = 1, g = 2, n = 4, 6

Second order Relative Relative Third order Relative Relative
z Lf5 (z) approximation error error bound approximation error error bound

0.002 2.7176126 2.7176126 6.34 × 10−5 1.96 × 10−4 2.7177846 1.0 × 10−7 1.2 × 10−7

0.001 3.1652507 3.1652046 1.4 × 10−5 6.85 × 10−5 3.165206 1.0 × 10−8 2.17 × 10−8

0.0005 3.691259 3.691246 3.4 × 10−6 2.38 × 10−5 3.691259 1.16 × 10−9 3.77 × 10−9

0.0001 5.2611778 5.261177 1.48 × 10−7 2.0 × 10−6 5.2611778 6.5 × 10−12 6.5 × 10−11

0.00005 6.11595839 6.11595813 4.19 × 10−8 7.2 × 10−7 6.115958387 7.0 × 10−13 1.0 × 10−11

0.00001 8.63234549 8.63234546 2.75 × 10−9 6.3 × 10−8 8.63234549 3.9 × 10−15 1.997 × 10−13

Table 6. Approximation supplied by (56) and error bounds given by (48) and (49).

Parameter values: ν = −2, a = 1.2, ρ = 3, b = 1, g = 2, n = 6, 9

Second order Relative Relative Third order Relative Relative
z Lf5 (z) approximation error error bound approximation error error bound

0.1 −0.16898599 −0.17026623 0.007 0.01 −0.16897995 3.6 × 10−5 1.0 × 10−4

0.01 0.60470192 0.6046355 1.0 × 10−4 1.3 × 10−4 0.60470195 5.0 × 10−8 1.4 × 10−7

0.001 2.83539549 2.83539227 1.1 × 10−6 1.3 × 10−6 2.8353955 5.1 × 10−11 1.4 × 10−10

0.0001 8.3317184 8.3317182 1.8 × 10−8 2.0 × 10−8 8.3317184 8.2 × 10−14 2.2 × 10−13

0.00001 20.9436177 20.94361772 3.4 × 10−10 3.8 × 10−10 20.9436177 1.7 × 10−16 4.0 × 10−16

Table 7. Approximation supplied by (62) and error bound given by (64).

Parameter values: ν = −2.7, a = 0.2, ρ = 3, d = 1, n = 6, 9

Second order Relative Relative Third order Relative Relative
z Lf2 (z) approximation error error bound approximation error error bound

0.01 18.413698 18.4140914 2.1 × 10−5 3.3 × 10−3 18.413701 1.9 × 10−7 1.6 × 10−5

0.002 49.1073814 49.107511 2.6 × 10−6 2.0 × 10−4 49.107382 3.3 × 10−9 2.0 × 10−7

0.001 74.081196 74.081266 9.0 × 10−7 6.6 × 10−5 74.081196 5.5 × 10−10 3.0 × 10−8

0.0005 111.261787 111.261823 3.2 × 10−7 2.0 × 10−5 111.261787 8.6 × 10−11 4.86 × 10−9

0.0001 282.828257 282.828264 2.5 × 10−8 1.4 × 10−6 282.828257 1.0 × 10−12 6.5 × 10−11

Table 8. Approximation supplied by (66) and error bounds given by (48) and (49).

Parameter values: ν = −2, a = 0.5, ρ = 2, d = 1, n = 4, 6

Second order Relative Relative Third order Relative Relative
z Lf2 (z) approximation error error bound approximation error error bound

0.1 3.1817197 3.17711956 0.0014 0.004 3.18175944 1.24 × 10−5 9.4 × 10−4

0.05 5.12288486 5.12064893 4.0 × 10−4 5.0 × 10−3 5.1228827 4.12 × 10−7 1.0 × 10−4

0.01 14.0419098 14.0416086 2.14 × 10−5 1.6 × 10−4 14.04190942 2.45 × 10−8 6.7 × 10−7

0.005 21.01263467 21.0125168 5.6 × 10−6 4.0 × 10−5 21.0126346 3.75 × 10−9 7.9 × 10−8

0.001 51.1531027 51.15309049 2.38 × 10−7 1.46 × 10−6 51.15310268 1.4 × 10−11 5.8 × 10−10

0.0005 74.01286165 74.0128571 6.0 × 10−8 3.6 × 10−7 74.01286165 4.9 × 10−12 7.0 × 10−11

column represents Lfi
(z). The third and sixth columns represent the approximation for the

two given values of n. Fourth and seventh columns represent the respective relative errors,
and fifth and last columns are the respective relative error bounds.
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