Analytic expansions of thermonuclear reaction rates

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2004 J. Phys. A: Math. Gen. 372637
(http://iopscience.iop.org/0305-4470/37/7/009)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.66
The article was downloaded on 02/06/2010 at 19:58

Please note that terms and conditions apply.

Analytic expansions of thermonuclear reaction rates

Chelo Ferreira ${ }^{1}$ and José L López ${ }^{2}$
${ }^{1}$ Departamento de Matemática Aplicada, Universidad de Zaragoza, 50013 Zaragoza, Spain
${ }^{2}$ Departamento de Matemática e Informática, Universidad Pública de Navarra, 31006 Pamplona, Spain
E-mail: cferrei@posta.unizar.es and jl.lopez@unavarra.es

Received 22 September 2003
Published 4 February 2004
Online at stacks.iop.org/JPhysA/37/2637 (DOI: 10.1088/0305-4470/37/7/009)

Abstract

The evaluation of thermonuclear reaction rates requires the calculation of several thermonuclear functions. These functions can be written as the Laplace transform of locally integrable functions which have an asymptotic expansion in negative rational powers of their variable. In this paper we obtain asymptotic expansions of the Laplace transform of these kinds of functions for small values of the parameter of the transformation. Error bounds are obtained at any order of the approximation for a large family of Laplace transforms which include thermonuclear functions. Then we apply this asymptotic theory to the calculation of convergent expansions of four thermonuclear functions in powers of the dimensionless Sommerfeld parameter. Some of these expansions also involve logarithmic terms in the dimensionless Sommerfeld parameter. Accurate error bounds are given at any order of the approximation.

PACS numbers: $02.30 . \mathrm{Gp}, 02.60 .-\mathrm{x}$
Mathematics Subject Classification: 41A60, 33C65

1. Introduction

The energy released by stars is due to nuclear reactions that occur near their centres where the motion of nuclei is in thermal equilibrium. The state of stellar matter is such that only the lightest elements contribute to these reactions because of the Coulomb repulsion between nuclei (see [5] and references therein for a full explanation of this phenomenon). Charged particle reaction rates for high-temperature and low-density thermonuclear plasma in the cosmological and stellar nucleosynthesis depend strongly on the penetrability of the Coulomb barrier and the velocity distribution of the reacting particles [4]. In fact, the reaction rate $r_{i j}$ of reacting particles i and j, in the case of nonrelativistic nuclear reactions (low energy) taking place in a nondegenerate environment, is usually expressed as $r_{i j}=n_{i} n_{j}\langle\sigma v\rangle$, where n_{i} and
n_{j} are the particle number densities of the reacting particles i and j respectively [2,6-9]. The symbol $\langle\sigma v\rangle$ represents the reaction probability integral [9, 11]:

$$
\begin{equation*}
\langle\sigma v\rangle \equiv \sqrt{\frac{8}{\pi \mu \kappa^{3} T^{3}}} \int_{0}^{\infty} E f(E) \sigma(E) \mathrm{d} E \tag{1}
\end{equation*}
$$

where μ is the reduced mass of the reacting particles, T is the temperature, κ is the Boltzmann constant, $\sigma(E)$ is the reaction cross section and $f(E)$ is the distribution of energy of the reacting particles.

Theoretical considerations and experimental data suggest several possible forms for the cross section $\sigma(E)$ and the energy distribution $f(E)$ in the above formula. For example, for nonresonant nuclear reactions, the cross section has the form [7, 9]

$$
\sigma(E)=\frac{S_{0}+S_{1} E+S_{2} E^{2}}{E} \exp \left\{-2 \pi \sqrt{\frac{\mu}{2}} \frac{z_{i} z_{j} e^{2}}{h \sqrt{E}}\right\}
$$

where S_{0}, S_{1} and S_{2} are experimental constants, h is Planck's constant, e is the electron charge and $z_{i} e$ and $z_{j} e$ are the charges of the reacting particles. For isotropic Maxwell-Boltzmann kinetic-energy distributions, the distribution of energy $f(E)$ has the form

$$
f(E)=\mathrm{e}^{-E / k T}
$$

After introducing the cross section and energy distribution in (1), we have

$$
\langle\sigma v\rangle=\sqrt{\frac{8}{\pi \mu}} \sum_{j=0}^{2} \frac{S_{j}}{(\kappa T)^{1 / 2-j}} \int_{0}^{\infty} y^{j} \mathrm{e}^{-y} \mathrm{e}^{-\tilde{z} / \sqrt{y}} \mathrm{~d} y
$$

where $y=E /(\kappa T)$ is a dimensionless integration variable and $\tilde{z} \equiv 2 \pi \sqrt{\frac{\mu}{2 \kappa T}} \frac{z_{i} z_{j} e^{2}}{h}$ is the dimensionless Sommerfeld parameter. For light reacting particles (typically ${ }^{3} \mathrm{He}$ or ${ }^{4} \mathrm{He}$) this parameter is of order $\tilde{z} \sim 10^{-4} T^{-1 / 2}$, that is, $0<\tilde{z} \ll 1$ unless T is near the absolute zero. Therefore, the evaluation of reaction rates, in the standard nonresonant Maxell-Boltzmann case, requires the calculation (or approximation) of the integrals $\int_{0}^{\infty} y^{j} \mathrm{e}^{-y} \mathrm{e}^{-\tilde{z} / \sqrt{y}} \mathrm{~d} y$, $j=1,2,3$, where \tilde{z} is a small parameter. Deviations from the ideal physical situation described above require a more general integral of the following form [9].

Nonresonant case:

$$
I_{1}(\tilde{z}) \equiv \int_{0}^{\infty} y^{\nu} \mathrm{e}^{-a y} \mathrm{e}^{-\tilde{z} y^{-1 / \rho}} \mathrm{d} y \quad v \in \mathbb{R} \quad a>0 \quad \tilde{z}>0 \quad \rho \in \mathbb{Q}^{+} .
$$

Physical situations different from the ideal nonresonant Maxell-Boltzmann case translate into modifications of the cross section $\sigma(E)$ for the reacting particles and/or their energy distribution $f(E)$. Then, the computation of $\langle\sigma v\rangle$ requires the calculation of integrals different from $I_{1}(\tilde{z})$. The integrals to be evaluated in these nonstandard physical situations are listed below.

If the thermonuclear fusion plasma is not in thermodynamic equilibrium and there is a cut-off of the high-energy tail of the Maxwell-Boltzmann distribution, the thermonuclear function to be evaluated is $[2,9]$ as follows.

Nonresonant case with high-energy cut-off:
$I_{2}(\tilde{z}) \equiv \int_{0}^{d} y^{\nu} \mathrm{e}^{-a y} \mathrm{e}^{-\tilde{z} y^{-\rho}} \mathrm{d} y \quad \nu \in \mathbb{R} \quad a>0 \quad \tilde{z}>0 \quad \rho \in \mathbb{Q}^{+} \quad d \in \mathbb{R}^{+}$.
If due to plasma effects, a depletion of the Maxwell-Boltzmann distribution has to be taken into account, the thermonuclear function is [2, 9, 10]

Nonresonant case with depleted tail:
$I_{3}(\tilde{z}) \equiv \int_{0}^{\infty} y^{\nu} \mathrm{e}^{-a y} \mathrm{e}^{-b y^{\delta}} \mathrm{e}^{-\tilde{z} y^{-\rho}} \mathrm{d} y \quad \nu \in \mathbb{R} \quad a>0 \quad b>0 \quad \tilde{z}>0 \quad \rho, \delta \in \mathbb{Q}^{+}$.
The Coulomb barrier seen by a reacting particle in dense ionized matter may be modified by the surrounding cloud of electrons. The electron screening effects for the reacting particles modify the cross section and then the thermonuclear function is $[2,7,9,11]$ as follows.

Screened nonresonant case:
$I_{4}(\tilde{z}) \equiv \int_{0}^{\infty} y^{\nu} \mathrm{e}^{-a y} \mathrm{e}^{-\tilde{z}(y+b)^{-\rho}} \mathrm{d} y \quad \nu \in \mathbb{R} \quad a>0 \quad \tilde{z}>0 \quad \rho \in \mathbb{Q}^{+} \quad b>0$.
If the cross section has a broad single resonance, it can be calculated using the BreitWigner formula. Then, the thermonuclear function to be evaluated is $[8,9]$ as follows.

Resonant case:
$I_{5}(\tilde{z}) \equiv \int_{0}^{\infty} \frac{y^{\nu} \mathrm{e}^{-a y} \mathrm{e}^{-\tilde{z} y^{-\rho}}}{(b-y)^{2}+g^{2}} \mathrm{~d} y \quad \nu, b, g \in \mathbb{R} \quad a>0 \quad \tilde{z}>0 \quad \rho \in \mathbb{Q}^{+} \quad g \neq 0$.
A depletion of the tail of the Maxwell-Boltzmann distribution in the presence of a resonance leads to the thermonuclear function [9] as follows.

Resonant case with depleted tail:
$I_{6}(\tilde{z}) \equiv \int_{0}^{\infty} \frac{y^{\nu} \mathrm{e}^{-a y-b y^{\delta}} \mathrm{e}^{-\tilde{z} y^{-\rho}}}{(b-y)^{2}+g^{2}} \mathrm{~d} y \quad \nu, b, g \in \mathbb{R} \quad a>0 \quad \tilde{z}>0 \quad \rho, \delta \in \mathbb{Q}^{+} \quad g \neq 0$.
Some analytical approximations to $I_{1}(\tilde{z})$ can be found in [3, 4] and [11]. But the more exhaustive investigation in the calculation of the integrals $I_{1}(\tilde{z}), \ldots, I_{6}(\tilde{z})$ has been developed by Haubold, Mathai and Anderson [2, 6-9]: they write these integrals in terms of G or H functions of some positive power of \tilde{z}. Then, from the known expansions of these two functions in powers of their argument [13,14], these authors obtain convergent expansions of these thermonuclear functions for small \tilde{z}. From the asymptotic approximations of G and H for large values of their argument, they also obtain asymptotic approximations of $I_{1}(\tilde{z}), \ldots, I_{6}(\tilde{z})$ for large values of \tilde{z}. The thermonuclear function $I_{1}(\tilde{z})$ may be written as a G function with variable \tilde{z}^{2} and then it can be expanded as a power series of \tilde{z}^{2} [8]. But each of the remaining integrals $I_{2}(\tilde{z}), \ldots, I_{6}(\tilde{z})$ is written as an infinite series of G functions, which in turn becomes a double or triple series in powers of \tilde{z}.

The first purpose of this work is to obtain asymptotic (in fact convergent) expansions of the six thermonuclear functions in the form of a simple series of powers of \tilde{z}. This more simple analytical expression clarifies the analytic properties of the thermonuclear functions as functions of \tilde{z} and simplifies their numerical evaluation. Of course, the expansion of $I_{1}(\tilde{z})$ obtained here agrees with that obtained by Haubold, Mathai and Anderson [2, 7-9]. Moreover, we will obtain accurate error bounds for the remainder at any order of the approximation. To face these challenges we require the distributional method to approximate Laplace transforms near the origin ([17], chapter 6). Then, the first step is to write every thermonuclear function $I_{1}(\tilde{z}), \ldots, I_{6}(\tilde{z})$ in the form of a Laplace transform:

$$
\begin{equation*}
\mathcal{L}_{f}(z) \equiv \int_{0}^{\infty} f(t) \mathrm{e}^{-z t} \mathrm{~d} t \tag{2}
\end{equation*}
$$

with a parameter z proportional to \tilde{z} or some positive power of \tilde{z}.
With the change of variable $y=\tilde{z}^{\rho} t, I_{1}(\tilde{z})$ reads

$$
\begin{equation*}
I_{1}(\tilde{z})=\tilde{z}^{\rho(\nu+1)} \mathcal{L}_{f_{1}}\left(a \tilde{z}^{\rho}\right) \quad f_{1}(t) \equiv t^{\nu} \mathrm{e}^{-t^{-1 / \rho}} . \tag{3}
\end{equation*}
$$

With the change of variable $y=d(t+1)^{-1 / \rho}, I_{2}(\tilde{z})$ reads
$I_{2}(\tilde{z})=\frac{\mathrm{d}^{\nu+1}}{\rho} \mathrm{e}^{-\tilde{z} d^{-\rho}} \mathcal{L}_{f_{2}}\left(\mathrm{~d}^{-\rho} \tilde{z}\right) \quad f_{2}(t) \equiv(1+t)^{-(\nu+1) / \rho-1} \mathrm{e}^{-a d(1+t)^{-1 / \rho}}$.
With the change of variable $y=t^{-1 / \rho}, I_{3}(\tilde{z})$ reads

$$
\begin{equation*}
I_{3}(\tilde{z})=\frac{1}{\rho} \mathcal{L}_{f_{3}}(\tilde{z}) \quad f_{3}(t) \equiv t^{-(\nu+1) / \rho-1} \mathrm{e}^{-a t^{-1 / \rho}-b t^{-\delta / \rho}} \tag{5}
\end{equation*}
$$

With the change of variable $y=u^{-1 / \rho}-b, I_{4}(\tilde{z})$ reads

$$
I_{4}(\tilde{z})=\frac{\mathrm{e}^{a b}}{\rho} \int_{0}^{b^{-\rho}} u^{-1 / \rho-1}\left(u^{-1 / \rho}-b\right)^{\nu} \mathrm{e}^{-\tilde{z} u} \mathrm{e}^{-a u^{-1 / \rho}} \mathrm{d} u
$$

Writing this integral as the difference $\int_{0}^{b^{-\rho}}=\int_{0}^{\infty}-\int_{b^{-\rho}}^{\infty}$ and performing the change of variable $u=t+b^{-\rho}$ in the second integral, we have

$$
\begin{aligned}
& I_{4}(\tilde{z})=\frac{\mathrm{e}^{a b}}{\rho}\left[\mathcal{L}_{f_{4}^{(1)}}(\tilde{z})-\mathrm{e}^{-b^{-\rho} \tilde{z}} \mathcal{L}_{f_{4}^{(2)}}(\tilde{z})\right] \\
& f_{4}^{(1)}(t) \equiv t^{-1 / \rho-1}\left(t^{-1 / \rho}-b\right)^{v} \mathrm{e}^{-a t^{-1 / \rho}} \\
& f_{4}^{(2)}(t) \equiv f_{4}^{(1)}\left(t+b^{-\rho}\right)
\end{aligned}
$$

With the change of variable $y=t^{-1 / \rho}, I_{5}(\tilde{z})$ reads

$$
\begin{equation*}
I_{5}(\tilde{z})=\frac{1}{\rho} \mathcal{L}_{f_{5}}(\tilde{z}) \quad f_{5}(t) \equiv \frac{t^{-(v+1) / \rho-1} \mathrm{e}^{-a t^{-1 / \rho}}}{\left(b-t^{-1 / \rho}\right)^{2}+g^{2}} \tag{6}
\end{equation*}
$$

With the change of variable $y=t^{-1 / \rho}, I_{6}(\tilde{z})$ reads

$$
I_{6}(\tilde{z})=\frac{1}{\rho} \mathcal{L}_{f_{6}}(\tilde{z}) \quad f_{6}(t) \equiv \frac{t^{-(\nu+1) / \rho-1} \mathrm{e}^{-a t^{-1 / \rho}-b t^{-\delta / \rho}}}{\left(b-t^{-1 / \rho}\right)^{2}+g^{2}}
$$

Asymptotic expansions of Laplace transform (2) near the origin (small z) of functions $f(t)$ that (i) are locally integrable on $[0, \infty$) and (ii) have an asymptotic expansion in integer powers of t^{-1} have been fully investigated by Wong ([17], chapter 6). But for $\rho^{-1} \notin \mathbb{N}$, the functions $f_{1}(t), \ldots, f_{6}(t)$ above do not admit an asymptotic expansion in integer powers of t^{-1}, but in integer powers of $t^{-1 / \rho}$. Then, Wong's method is not directly applicable.

The second purpose of this paper is then: (i) the generalization of Wong's distributional method to obtain formal asymptotic expansions of Laplace transform (2) near the origin of locally integrable functions $f(t)$ on $[0, \infty)$ which have an asymptotic expansion in negative rational powers of t, (ii) show the asymptotic character of these expansions and (iii) obtain error bounds at any order of the approximation for a large family of Laplace transforms which include the thermonuclear functions.

The paper is organized as follows. In section 2 we introduce the above mentioned generalization of Wong's method. As an illustration of the power of this method, we obtain in section 3 convergent (and asymptotic) expansions in powers of the dimensionless Sommerfeld parameter \tilde{z} of $I_{1}(\tilde{z}), I_{2}(\tilde{z}), I_{3}(\tilde{z})$ and $I_{5}(\tilde{z})$ (for I_{2}, I_{3} and I_{5} only in the case $\rho \in \mathbb{N}$). The computations of the expansions for $I_{2}, I_{3}, I_{4}, I_{5}$ and I_{6} in the general case $\rho \in \mathbb{Q}^{+}$are more involved and we relegate them to a forthcoming paper. We also obtain error bounds for the expansions mentioned. Several numerical examples are shown as illustrations in section 4.

2. Distributional approach for Laplace transforms

In the following, $f(t)$ denotes a locally integrable function on $[0, \infty)$ which satisfies

$$
\begin{equation*}
f(t)=\sum_{k=K}^{n-1} \frac{a_{k}}{t^{k / s+\beta}}+f_{n}(t) \quad s \in \mathbb{N} \quad K \in \mathbb{Z} \quad 0<\operatorname{Re} \beta \leqslant 1 / s \tag{7}
\end{equation*}
$$

$\left\{a_{k}, k=K, K+1, K+2, \ldots\right\}$ is a sequence of complex numbers and $f_{n}(t)=\mathcal{O}\left(t^{-n / s-\beta}\right)$ when $t \rightarrow \infty$. (In chapter 6 of [17], only the case $s=1$ and $\beta \in \mathbb{R}, 0<\beta \leqslant 1$, is considered.) In the following we use the notation introduced in [17]. Empty sums must be understood as zero.

2.1. Asymptotic expansion of $L_{f}(z)$ for small z

We denote by \mathcal{S} the space of rapidly decreasing functions on $[0, \infty)$ and by $\langle\boldsymbol{\Lambda}, \varphi\rangle$ the image of a tempered distribution $\boldsymbol{\Lambda}$ acting over a function $\varphi \in \mathcal{S}$. Since $f(t)$ in (7) is a locally integrable function on $[0, \infty)$, it defines a distribution \mathbf{f} :

$$
\langle\mathbf{f}, \varphi\rangle \equiv \int_{0}^{\infty} f(t) \varphi(t) \mathrm{d} t
$$

The distributions associated with $t^{-k-\beta}, k=0,1,2, \ldots, n-1$, are given by [17, chapter 5]

$$
\begin{aligned}
& \left\langle\mathbf{t}^{-\mathbf{k}-\beta}, \varphi\right\rangle \equiv \frac{1}{(\beta)_{k}} \int_{0}^{\infty} t^{-\beta} \varphi^{(k)}(t) \mathrm{d} t \quad \text { if } \quad 0<\operatorname{Re} \beta<1 \\
& \left\langle\mathbf{t}^{-\mathbf{k}-\beta}, \varphi\right\rangle \equiv \frac{1}{(i \operatorname{Im} \beta)_{k+1}} \int_{0}^{\infty} t^{-i \operatorname{Im} \beta} \varphi^{(k+1)}(t) \mathrm{d} t \quad \text { if } \quad 1 \neq \beta=1+i \operatorname{Im} \beta
\end{aligned}
$$

where $(\beta)_{k}$ denotes the Pochhammer's symbol of β, and

$$
\left\langle\mathbf{t}^{-\mathbf{k}-1}, \varphi\right\rangle \equiv-\frac{1}{k!} \int_{0}^{\infty} \log (t) \varphi^{(k+1)}(t) \mathrm{d} t .
$$

To assign a distribution to the function $f_{n}(t)$ introduced in (7), we first define recursively the k th integral $f_{n, k}(t)$ of $f_{n}(t)$ by $f_{n, 0}(t) \equiv f_{n}(t)$ and, for $k=0,1,2, \ldots, n / s-1$ (with n being a multiple of s),

$$
\begin{equation*}
f_{n, k+1}(t) \equiv-\int_{t}^{\infty} f_{n, k}(u) \mathrm{d} u=\frac{(-1)^{k+1}}{k!} \int_{t}^{\infty}(u-t)^{k} f_{n}(u) \mathrm{d} u . \tag{8}
\end{equation*}
$$

For $\beta \neq 1 / s$, it is trivial to show that $f_{n, n / s}(t)$ is bounded on $[0, T]$ for any $T>0$ and is $\mathcal{O}\left(t^{-\beta}\right)$ as $t \rightarrow \infty$. For $\beta=1 / s$ we have $f_{n, n / s}(t)=\mathcal{O}\left(t^{-1 / s}\right)$ as $t \rightarrow \infty$ and $f_{n, n / s}(t)=\mathcal{O}(\log (t))$ as $t \rightarrow 0^{+}$. Therefore, for $0<\operatorname{Re} \beta \leqslant 1 / s$ we can define the distribution associated with $f_{n}(t)$ by

$$
\left\langle\mathbf{f}_{\mathbf{n}}, \varphi\right\rangle \equiv(-1)^{n / s}\left\langle\mathbf{f}_{\mathbf{n}, \mathbf{n} / \mathbf{s}}, \varphi^{(n / s)}\right\rangle \equiv(-1)^{n / s} \int_{0}^{\infty} f_{n, n / s}(t) \varphi^{(n / s)}(t) \mathrm{d} t
$$

Once we have assigned a distribution to each function involved in the identity (7), we are interested in finding an identity between these distributions. In fact, this relation is established in the following two lemmas.

Lemma 1. For $0<\operatorname{Re} \beta<1 / s, s \in \mathbb{N}, n \geqslant K+1$, and $n=s, 2 s, 3 s, \ldots$, the identity

$$
\mathbf{f}=\sum_{k=K}^{n-1} a_{k} \mathbf{t}^{-\mathbf{k} / \mathbf{s}-\beta}+\sum_{k=0}^{n / s-1} \frac{(-1)^{k}}{k!} M[f ; k+1] \delta^{(\mathbf{k})}+\mathbf{f}_{\mathbf{n}}
$$

holds for any function $\varphi \in \mathcal{S}$, where δ is the delta distribution in the origin and $M[f ; k+1]$ denotes de Mellin transform of $f(t): \int_{0}^{\infty} t^{k} f(t) \mathrm{d} t$, or its analytic continuation.
Proof. It is a trivial generalization of lemma 1 in [12] from real to complex values of β.
Lemma 2. For $\operatorname{Re} \beta=1 / s, s \in \mathbb{N}, n \geqslant K+1$ and $n=s, 2 s, 3 s, \ldots$, the identity

$$
\mathbf{f}=\sum_{k=K}^{n-1} a_{k} \mathbf{t}^{-\mathbf{k} / \mathbf{s}-\beta}+\sum_{k=0}^{n / s-1} b_{(k+1) s} \delta^{(\mathbf{k})}+\mathbf{f}_{\mathbf{n}}
$$

holds for any rapidly decreasing function $\varphi \in \mathcal{S}$, where, for $n=0, s, 2 s, \ldots$

$$
\begin{align*}
b_{n+s}=\frac{(-1)^{n / s}}{(n / s)!} & {\left[\int_{0}^{1} t^{n / s} f_{n}(t) \mathrm{d} t+\int_{1}^{\infty} t^{n / s} f_{n+s}(t) \mathrm{d} t\right.} \\
& \left.+\sum_{k=0}^{s-2} \frac{(n / s)!a_{n+k}}{(k / s+\beta-1)_{n / s+1}}+\sum_{k=1}^{n / s+1} \sum_{j=n}^{n+s-1} \frac{(n / s-k+2)_{k-1} a_{j}}{(j / s+\beta-k)_{k}}\right] \tag{9}\\
= & \frac{(-1)^{n / s}}{(n / s)!}\left\{M[f ; n / s+1]+\frac{a_{n+s-1}}{1 / s-\beta}+\sum_{k=0}^{s-2}\left[\frac{(n / s)!}{(k / s+\beta-1)_{n / s+1}}\right.\right. \\
& \left.\left.-\frac{1}{k / s+\beta-1}\right] a_{n+k}+\sum_{k=1}^{n / s+1} \sum_{j=n}^{n+s-1} \frac{(n / s-k+2)_{k-1} a_{j}}{(j / s+\beta-k)_{k}}\right\} \tag{10}
\end{align*}
$$

if $\operatorname{Im} \beta \neq 0$, or

$$
\begin{align*}
b_{n+s}=\frac{(-1)^{n / s}}{(n / s)!} & {\left[\int_{0}^{1} t^{n / s} f_{n}(t) \mathrm{d} t+\int_{1}^{\infty} t^{n / s} f_{n+s}(t) \mathrm{d} t\right.} \\
& \left.+\sum_{k=0}^{s-2} \frac{(n / s)!a_{n+k}}{((k+1) / s-1)_{n / s+1}}+\sum_{k=1}^{n / s} \sum_{j=n}^{n+s-1} \frac{(n / s-k+2)_{k-1} a_{j}}{((j+1) / s-k)_{k}}\right] \tag{11}\\
= & \frac{(-1)^{n / s}}{(n / s)!}\left\{\lim _{z \rightarrow n / s}\left[M[f ; z+1]+\frac{a_{n+s-1}}{z-n / s}\right]+\sum_{k=0}^{s-2}\left[\frac{(n / s)!}{((k+1) / s-1)_{n / s+1}}\right.\right. \\
& \left.\left.-\frac{1}{(k+1) / s-1}\right] a_{n+k}+\sum_{k=1}^{n / s} \sum_{j=n}^{n+s-1} \frac{(n / s-k+2)_{k-1} a_{j}}{((j+1) / s-k)_{k}}\right\} \tag{12}
\end{align*}
$$

if $\operatorname{Im} \beta=0$.
Proof. Let $f_{0}(t) \equiv f(t)-\sum_{k=K}^{-1} a_{k} t^{-k / s-\beta}$. Then, for $n=0, s, 2 s, \ldots$

$$
f_{n+s}(t)=f_{n}(t)-\sum_{k=n}^{n+s-1} \frac{a_{k}}{t^{k / s+\beta}}
$$

and

$$
f_{n+s, n / s}(t)=f_{n, n / s}(t)-(-1)^{n / s} \sum_{k=0}^{s-1} \frac{a_{n+k}}{(k / s+\beta)_{n / s}} \frac{1}{t^{k / s+\beta}}
$$

From this it follows, by integration, that

$$
\begin{aligned}
\int_{0}^{t} f_{n, n / s}(u) \mathrm{d} u & =f_{n+s, n / s+1}(t)+(-1)^{n / s} a_{n+s-1} g_{n / s}(\beta, t) \\
& -(-1)^{n / s} \sum_{k=0}^{s-2} \frac{a_{n+k} t^{1-(k / s+\beta)}}{(k / s+\beta-1)_{n / s+1}}+b_{n+s}
\end{aligned}
$$

where

$$
g_{n}(\beta, t) \equiv \begin{cases}\log t / n! & \text { if } \quad \operatorname{Im} \beta=0 \\ -t^{-i \operatorname{Im} \beta} /(i \operatorname{Im} \beta)_{n+1} & \text { if } \quad \operatorname{Im} \beta \neq 0\end{cases}
$$

and we have defined the integration constant

$$
b_{n+s} \equiv-\lim _{t \rightarrow 0}\left[f_{n+s, n / s+1}(t)+(-1)^{n / s} a_{n+s-1} g_{n / s}(\beta, t)\right]
$$

From here, the proof is the same as the proof of lemma 2 in [12], replacing $\log t$ by $(n / s)!g_{n / s}(\beta, t)$ and $(k+1) / s$ by $k / s+\beta$ in that proof.

To apply lemmas 1 and 2 to the integral (2) we choose $\varphi(t)=\mathrm{e}^{-z t}$, which belong to \mathcal{S} for $\operatorname{Re} z \geqslant 0$. We will also need the following lemma.

Lemma 3. Let $f(t)$ verify (7). Then, for $0<\operatorname{Re} \beta \leqslant 1, k=0,1,2, \ldots$ and $n=s, 2 s, 3 s, \ldots$ the following identities hold:

$$
\begin{aligned}
& \langle\mathbf{f}, \varphi\rangle=\int_{0}^{\infty} f(t) \mathrm{e}^{-z t} \mathrm{~d} t \\
& \left\langle\delta^{(k)}, \varphi\right\rangle=z^{k} \\
& \left\langle\mathbf{t}^{-\mathbf{k} / \mathbf{s}-\beta}, \varphi\right\rangle=\Gamma(1-k / s-s) z^{k / s+\beta-1} \\
& \left\langle\mathbf{t}^{-\mathbf{k}-\mathbf{1}}, \varphi\right\rangle=\frac{(-1)^{k+1}}{k!}(\gamma+\log z) z^{k} \\
& \left\langle\mathbf{f}_{\mathbf{n}, \mathbf{n} / \mathbf{s}}, \varphi^{(n / s)}\right\rangle=(-1)^{n / s} z^{n / s} \int_{0}^{\infty} f_{n, n / s}(t) \mathrm{e}^{-z t} \mathrm{~d} t
\end{aligned}
$$

Proof. It is a straightforward generalization of the analogue equations given in [17, chapter 6 , section 5] from real to complex values of β.

With these preparations, we are now able to obtain asymptotic expansions of the integrals (2) for small z in the following two theorems.

Theorem 1. Let $f(t)$ be a locally integrable function on $[0, \infty)$ which satisfies (7) with $\beta \neq 1 / s$. Then, for $\operatorname{Re} z>0$, and $n=s, 2 s, 3 s, \ldots$

$$
\begin{align*}
\int_{0}^{\infty} f(t) \mathrm{e}^{-z t} \mathrm{~d} t & =\sum_{k=K}^{-1} a_{k} \Gamma(1-k / s-\beta) z^{k / s+\beta-1} \\
& +\sum_{k=0}^{n / s-1} z^{k}\left[M_{k}+\sum_{j=0}^{s-1} \Gamma(1-k-j / s-\beta) a_{s k+j} z^{\beta+j / s-1}\right]+R_{n, s}(z) \tag{13}
\end{align*}
$$

where

$$
M_{k} \equiv \begin{cases}(-1)^{k} M[f ; k+1] / k! & \text { if } \operatorname{Re} \beta \neq 1 / s \\ b_{(k+1) s} & \text { if } \operatorname{Re} \beta=1 / s\end{cases}
$$

and, for $k=0,1,2, \ldots$, the coefficients $b_{(k+1) s}$ are given by (9) or (10).

The remainder term is defined by

$$
\begin{equation*}
R_{n, s}(z) \equiv z^{n / s} \int_{0}^{\infty} f_{n, n / s}(t) \mathrm{e}^{-z t} \mathrm{~d} t \tag{14}
\end{equation*}
$$

where $f_{n, n / s}(t)$ is defined in (8).
Proof. For $\operatorname{Re} \beta \neq 1 / s$ it follows from lemmas 1 and 3. For $\operatorname{Re} \beta=1 / s$ it follows from lemmas 2 and 3 , and using formula

$$
\begin{equation*}
\left\langle t^{-k / s-\beta}, \varphi\right\rangle=\frac{1}{(v)_{[k / s]}}\left\langle t^{-v}, \varphi^{([k / s])}\right\rangle \quad \text { if } \quad k / s \notin \mathbb{N} \tag{15}
\end{equation*}
$$

with $v \equiv k / s+\beta-[k / s]$.
Theorem 2. Let $f(t)$ be a locally integrable function on $[0, \infty)$ which satisfies (7) with $\beta=1 / s$. Then, for $\operatorname{Re} z>0$ and $n=s, 2 s, 3 s, \ldots$

$$
\begin{align*}
\int_{0}^{\infty} f(t) \mathrm{e}^{-z t} \mathrm{~d} t & =\sum_{k=K}^{-1} a_{k} \Gamma(1-(k+1) / s) z^{(k+1) / s-1} \\
& +\sum_{k=0}^{n / s-1} z^{k}\left[a_{s(k+1)-1} \frac{(-1)^{k+1}}{k!}(\log z+\gamma)+b_{(k+1) s}\right. \\
& \left.\times \sum_{j=0}^{s-2} a_{s k+j} \Gamma(1-k-(j+1) / s) z^{(j+1) / s-1}\right]+R_{n, s}(z) \tag{16}
\end{align*}
$$

where γ is the Euler constant and, for $k=0,1,2, \ldots$, the coefficients $b_{(k+1) s}$ are given by (11) or (12).

The remainder term $R_{n, s}(z)$ is given in (14).
Proof. From lemmas 2 and 3 and formula

$$
\left\langle t^{-(k+1) / s}, \varphi_{\eta}\right\rangle=\frac{-1}{((k+1) / s-1)!}\left\langle\log t, \varphi_{\eta}^{((k+1) / s)}\right\rangle \quad \text { if } \quad(k+1) / s \in \mathbb{N} .
$$

or formula (15) with $\beta=1 / s$ if $(k+1) / s \notin \mathbb{N}$, we immediately obtain formula (16) with $R_{n, s}(z)$ given in (14).

2.2. Error bounds

In the following theorem we show that expansions (13) and (16) are not only formal, but also true asymptotic expansions for small z.

Theorem 3. In the region of validity of expansions (13) and (16), the remainder term $R_{n, s}(z)$ verifies

$$
\begin{equation*}
\left|R_{n, s}(z)\right| \leqslant C_{n}|z|^{n / s+\operatorname{Re} \beta-1} \tag{17}
\end{equation*}
$$

if $s>1$ or $0<\operatorname{Re} \beta<1$ and

$$
\begin{equation*}
\left|R_{n, s}(z)\right| \leqslant C_{n}|z|^{n}|\log z| \tag{18}
\end{equation*}
$$

if $s=\operatorname{Re} \beta=1$, where the constants C_{n} are independent of $|z|$ (it may depend on the remaining parameters of the problem).

Proof. On one hand, $f_{n}(t)=\mathcal{O}\left(t^{-n / s-\beta}\right)$ for $t \rightarrow \infty$ (with $\left.0<\operatorname{Re} \beta \leqslant 1 / s\right)$ then, there is a certain $t_{0} \in(0, \infty)$ and a constant $C_{1, n}$ such that $\left|f_{n}(t)\right| \leqslant C_{1, n} t^{-n / s-\operatorname{Re} \beta} \forall t \in\left[t_{0}, \infty\right)$.

Introducing this bound in definition (8) of $f_{n, n / s}(t)$ we obtain the bound $\left|f_{n, n / s}(t)\right| \leqslant$ $C_{2, n} t^{-\operatorname{Re} \beta} \forall t \in\left[t_{0}, \infty\right)$, where $C_{2, n}$ is a certain positive constant and $0<\operatorname{Re} \beta \leqslant 1 / s$. On the other hand, $f_{n, n / s}(t)$ is bounded on any compact interval in $[0, \infty)$ for $\beta \neq 1 / s$ and $f_{n, n / s}(t)$ is bounded on any compact interval in $(0, \infty)$ and $\mathcal{O}(\log t)$ as $t \rightarrow 0^{+}$for $\operatorname{Re} \beta=s=1$. Then, $\forall t \in\left[0, t_{0}\right],\left|f_{n, n / s}(t)\right| \leqslant C_{3, n} t^{-\operatorname{Re} \beta}$ for $0<\operatorname{Re} \beta<1$ and $\left|f_{n, n}(t)\right| \leqslant C_{3, n}(|\log t|+1)$ for $\operatorname{Re} \beta=s=1$, where $C_{3, n}$ is a certain positive constant.

If we divide the integration interval $[0, \infty)$ in the definition (14) of $R_{n, s}(z)$ at the point t_{0} and introduce these bounds in each of the intervals $\left[0, t_{0}\right]$ and $\left[t_{0}, \infty\right)$, we obtain bounds (17) and (18).

The bounds given in theorem 3 are not useful for numerical computations unless we are able to calculate the constants C_{n} in terms of the dates of the problem. The property $f_{n}(t)=\mathcal{O}\left(t^{-n / s-\beta}\right)$ when $t \rightarrow \infty$ implies that $\exists t_{0}>0$ and $c_{n}>0,\left|f_{n}(t)\right| \leqslant$ $c_{n} t^{-n / s-\operatorname{Re} \beta} \forall t \in\left[t_{0}, \infty\right)$. The following two propositions show that, if the bound $\left|f_{n}(t)\right| \leqslant c_{n} t^{-n / s-\operatorname{Re} \beta}$ holds $\forall t \in[0, \infty)$ then, the constants C_{n} in theorem 3 can be calculated in terms of the constant c_{n}.

Proposition 1. If, for $s>1$ or $0<\operatorname{Re} \beta<1$, the remainder $f_{n}(t)$ in expansion (7) of the function $f(t)$ satisfies the bound $\left|f_{n}(t)\right| \leqslant c_{n} t^{-n / s-\operatorname{Re} \beta} \forall t \in[0, \infty)$ for some positive constant c_{n}, then the remainder $R_{n, s}(z)$ in expansion (13) satisfies

$$
\begin{equation*}
\left|R_{n, s}(z)\right| \leqslant \frac{c_{n} \pi}{\sin (\pi \operatorname{Re} \beta) \Gamma(n / s+\operatorname{Re} \beta)}|z|^{n / s+\operatorname{Re} \beta-1} \tag{19}
\end{equation*}
$$

Proof. Introducing the bound $\left|f_{n}(t)\right| \leqslant c_{n} t^{-n / s-\operatorname{Re} \beta}$ in the definition (8) of $f_{n, n / s}(t)$ we obtain

$$
\left|f_{n, n / s}(t)\right| \leqslant \frac{c_{n} \Gamma(\operatorname{Re} \beta)}{\Gamma(n / s+\operatorname{Re} \beta) t^{\operatorname{Re} \beta}} \quad \forall t \in[0, \infty)
$$

Introducing this bound in definition (14) of $R_{n, s}(z)$ we obtain (19).
Proposition 2. If, for $s=\operatorname{Re} \beta=1$, each remainder $f_{n}(t)$ in expansion (7) of the function $f(t)$ satisfies the bound $\left|f_{n}(t)\right| \leqslant c_{n} t^{-n-1}, \forall t \in[0, \infty)$ for some positive constant c_{n}, then the remainder $R_{n, s}(z)$ in expansions (13) satisfies

$$
\begin{equation*}
\left|R_{n, 1}(z)\right| \leqslant \frac{\bar{c}_{n} \pi}{\Gamma(n+1 / 2)}|z|^{n-1 / 2} \tag{20}
\end{equation*}
$$

where $\bar{c}_{n} \equiv \operatorname{Max}\left\{c_{n}, c_{n-1}+\left|a_{n-1}\right|\right\}$ and

$$
\begin{equation*}
\left|R_{n, 1}(z)\right| \leqslant\left\{\frac{1}{(n-1)!}\left[\left(c_{n-1}+\left|a_{n-1}\right|\right) \varepsilon+c_{n}\right]+\frac{c_{n}}{n!} \Theta(z, \varepsilon)\right\}|z|^{n} \tag{21}
\end{equation*}
$$

where ε is an arbitrary positive number, and

$$
\Theta(z, \varepsilon) \equiv \begin{cases}\mathrm{e}^{-1}-\log (\varepsilon \operatorname{Re} z) & \text { if } \quad \varepsilon \operatorname{Re} z<1 \tag{22}\\ \mathrm{e}^{-\varepsilon \operatorname{Re} z} & \text { if } \quad \varepsilon \operatorname{Re} z \geqslant 1 \\ \varepsilon \operatorname{Re} z & \end{cases}
$$

For small enough z and fixed n, the optimum value for ε is given approximately by

$$
\begin{equation*}
\varepsilon=\frac{c_{n}}{n\left(c_{n-1}+\left|a_{n-1}\right|\right)} . \tag{23}
\end{equation*}
$$

Proof. From $\left|f_{n-1}(t)\right| \leqslant c_{n-1} t^{-n} \forall t \in[0, \infty)$ and $f_{n}(t)=f_{n-1}(t)-a_{n-1} t^{-n}$ we obtain $\left|f_{n}(t)\right| \leqslant\left(c_{n-1}+\left|a_{n-1}\right|\right) t^{-n} \forall t \in[0, \infty)$. To obtain bound (21) we divide the integral defining $f_{n, n}(t)$ in (8) by a fixed point $u=\varepsilon \geqslant t$ and use the bound $\left|f_{n}(t)\right| \leqslant\left(c_{n-1}+\left|a_{n-1}\right|\right) t^{-n}$ in

Figure 1. Analyticity region W for the function $g(w)$ considered in lemma 4. The integration variable u in (8) is real and unbounded and therefore, the analyticity region for $g(w)$ in (26) must contain the positive real axis. The circle of radius r centred at $\xi(u)$, with $0<\xi(u)<u$, used in the proof of lemma 4 must be contained in this region and therefore, $r<\sigma$.
the integral over $[t, \varepsilon]$ and the bound $\left|f_{n}(t)\right| \leqslant c_{n} t^{-n-1}$ in the integral over $[\varepsilon, \infty)$. Using $u-t \leqslant u$ in the integral over $[t, \varepsilon]$ we obtain
$\left|f_{n, n}(t)\right| \leqslant \frac{1}{(n-1)!}\left[\left(c_{n-1}+\left|a_{n-1}\right|\right) \log \left(\frac{\varepsilon}{t}\right)+\frac{c_{n}}{\varepsilon}\right] \quad \forall t \in[0, \varepsilon] \quad \varepsilon>0$.
On the other hand, $\forall t \in[0, \infty)$ we introduce the bound $\left|f_{n}(t)\right| \leqslant c_{n} t^{-n-1}$ in the integral definition of $f_{n, n}(t)$ and perform the change of variable $u=t v$. We obtain

$$
\begin{equation*}
\left|f_{n, n}(t)\right| \leqslant \frac{c_{n}}{n!} \frac{1}{t} \quad \forall t \in[0, \infty) \tag{25}
\end{equation*}
$$

If we divide the integral on the right-hand side of (14) at the point $t=\varepsilon$ and use bound (25) in the integral over $[\varepsilon, \infty)$ and bound (24) in the integral over $[0, \varepsilon]$, we obtain (21) and (22). For small z and fixed n, this bound takes its optimum value, approximately, for ϵ given in (23).

Now we derive (20). From $\left|f_{n-1}(t)\right| \leqslant c_{n-1} t^{-n}$ and $f_{n}(t)=f_{n-1}(t)-a_{n-1} t^{-n} \forall t \in$ $[0, \infty), n \in \mathbb{N}$, we obtain $\left|f_{n}(t)\right| \leqslant\left(c_{n-1}+\left|a_{n-1}\right|\right) t^{-n} \forall t \in[0, \infty)$. Then, we have both $\left|f_{n}(t)\right| \leqslant c_{n} t^{-n-1 / 2}$ if $t \geqslant 1$ and $\left|f_{n}(t)\right| \leqslant\left(c_{n-1}+\left|a_{n-1}\right|\right) t^{-n-1 / 2}$ if $t \leqslant 1$. Therefore, $\left|f_{n}(t)\right| \leqslant \bar{c}_{n} t^{-n-1 / 2} \forall t \in[0, \infty)$. Then, $f_{n}(t)$ satisfies the bound required in proposition 1 with $s=1, \operatorname{Re} \beta=1 / 2$ and c_{n} replaced by \bar{c}_{n}. Repeating now the calculations of the proof of proposition 1, we obtain (20).

The following lemma introduces a family of functions $f(t)$ which verify the bound $\left|f_{n}(t)\right| \leqslant c_{n} t^{-n / s-\operatorname{Re} \beta} \forall t \in[0, \infty)$. Moreover, for these functions $f(t)$, the constants c_{n} can be easily obtained from $f(t)$.

Lemma 4. Suppose that $f(t)$ verifies (7) and consider the function $g(u) \equiv u^{-\beta s} f\left(u^{-s}\right)-$ $\sum_{k=K}^{-1} a_{k} u^{k}$. If $g(w)$ is a bounded analytic function in the region W of the complex w-plane comprised by the points situated at a distance $<\sigma$ from the positive real axis (see figure 1), then,

$$
\left|f_{n}(t)\right| \leqslant C r^{-n} t^{-n / s-\operatorname{Re} \beta}
$$

where C is a bound of $|g(w)|$ in W and $0<r<\sigma$.

Proof. From asymptotic expansion (7) and the Lagrange formula for the remainder in the Taylor expansion of $g(u)$ at $u=0$, we have

$$
g(u)=\sum_{k=0}^{n-1} a_{k} u^{k}+R_{n}(u)
$$

where

$$
R_{n}(u)=\left.\frac{1}{n!} \frac{\mathrm{d}^{n} g(u)}{\mathrm{d} u^{n}}\right|_{u=\xi} u^{n} \quad \xi \in(0, u)
$$

Using the Cauchy formula for the derivative of an analytic function,

$$
\begin{equation*}
\frac{\mathrm{d}^{n} g(u)}{\mathrm{d} u^{n}}=\frac{n!}{2 \pi \mathrm{i}} \int_{\mathcal{C}} \frac{g(w)}{(w-\xi)^{n+1}} \mathrm{~d} w \tag{26}
\end{equation*}
$$

where \mathcal{C} is a circle of radius r around ξ contained in the region W. Then, for fixed ξ and r, performing the change of variable $w=\xi+r \mathrm{e}^{\mathrm{i} \theta}$, and using $\left|g\left(\xi+r \mathrm{e}^{\mathrm{i} \theta}\right)\right| \leqslant C$ for $\theta \in[0,2 \pi)$ with C independent of θ, r and ξ, we obtain the desired result.

Lemma 5. If expansion (7) verifies the error test, then

$$
\left|f_{n}(t)\right| \leqslant\left|a_{n}\right| t^{-n / s-\operatorname{Re} \beta} \quad \text { and } \quad\left|f_{n}(t)\right| \leqslant\left|a_{n-1}\right| t^{-(n-1) / s-\operatorname{Re} \beta}
$$

Proof. A proof of the first inequality can be found in [15, p 68]. The second inequality follows from the first one, from $\operatorname{sign}\left(f_{n}(t)\right) \neq \operatorname{sign}\left(f_{n-1}(t)\right)$ and

$$
f_{n}(t)=f_{n-1}(t)-\frac{a_{n-1}}{t^{(n-1) / s+\beta}} .
$$

Corollary 1. If $f(t)$ verifies the hypotheses of lemma 4, then $R_{n, s}(z)$ satisfies the bounds given in proposition 1 or 2 with $c_{n}=\mathrm{Cr}^{-n}$. Moreover, the expansions given in theorems 1 and 2 are convergent.

Corollary 2. If expansion (7) of $f(t)$ verifies the error test, then $R_{n, s}(z)$ satisfies the bounds given in proposition 1 or 2 replacing c_{n} by $\left|a_{n}\right|$ and c_{n-1} by 0 . Moreover, the expansions given in theorems 1 and 2 are convergent when $\lim _{n \rightarrow \infty} a_{n}(e z)^{n / s}(n / s)^{1 / 2-n / s-\operatorname{Re} \beta}=0$.

3. Convergent expansions of thermonuclear functions

Asymptotic expansions in powers of \tilde{z} of $I_{1}(\tilde{z}), \ldots, I_{6}(\tilde{z})$ may be obtained by applying theorem 1 or 2 to $\mathcal{L}_{f_{1}}(\tilde{z}), \ldots, \mathcal{L}_{f_{6}}(\tilde{z})$ respectively. Error bounds for these expansions and their convergence follow from proposition 1 or 2 or corollary 1 or 2 .

We consider in this section the integrals $\mathcal{L}_{f_{1}}(\tilde{z}), \mathcal{L}_{f_{2}}(\tilde{z}), \mathcal{L}_{f_{3}}(\tilde{z})$ and $\mathcal{L}_{f_{5}}(\tilde{z})\left(\mathcal{L}_{f_{2}}(\tilde{z}), \mathcal{L}_{f_{3}}(\tilde{z})\right.$ and $\mathcal{L}_{f_{5}}(\tilde{z})$ only in the case $\left.\rho \in \mathbb{N}\right)$. Integrals $\mathcal{L}_{f_{2}}(\tilde{z}), \mathcal{L}_{f_{3}}(\tilde{z}), \mathcal{L}_{f_{4}}(\tilde{z}), \mathcal{L}_{f_{5}}(\tilde{z})$ and $\mathcal{L}_{f_{6}}(\tilde{z})$ in the general case $\rho \in \mathbb{Q}^{+}$are relegated to a forthcoming paper.

3.1. Nonresonant case

We rewrite the rational number ρ defining the function $f_{1}(t)$ in (3) as $\rho=\bar{\rho} / \delta$, with $\bar{\rho}, \delta \in \mathbb{N}$, δ and $\bar{\rho}$ being relative primes:

$$
\begin{equation*}
f_{1}(t)=t^{\nu} \mathrm{e}^{-t^{-\delta / \bar{\beta}}} \tag{27}
\end{equation*}
$$

Then, this function satisfies

$$
f_{1}(t)=\sum_{k=K}^{n-1} \frac{A_{k-K}}{t^{k / / \bar{\rho}+\beta}}+f_{n}(t) \quad A_{k} \equiv \begin{cases}\frac{(-1)^{(k / \delta)}}{(k / \delta)!} & \text { if } k=\dot{\delta} \tag{28}\\ 0 & \text { if } k \neq \dot{\delta}\end{cases}
$$

where $K \equiv \operatorname{Int}(-\bar{\rho} \nu), \beta \equiv \operatorname{Fr}(-\bar{\rho} \nu) / \bar{\rho}$ and $f_{n}(t)=\mathcal{O}\left(t^{-n / \bar{\rho}-\beta}\right)$ when $t \rightarrow \infty$.
Corollary 3. For $\bar{\rho} v \notin \mathbb{Z}, z>0$ and $n, \bar{\rho}, \delta \in \mathbb{N}$ with n being a multiple of $\bar{\rho}$ and $n-K$ being a multiple of δ,

$$
\begin{align*}
\mathcal{L}_{f_{1}}(z)=\sum_{k=0}^{-K-1} & A_{k} \Gamma\left(v+1-\frac{k}{\bar{\rho}}\right) z^{k / \bar{\rho}-v-1}+\sum_{k=0}^{n / \bar{\rho}-1} z^{k}\left[\frac{(-1)^{k} \bar{\rho}}{\delta k!} \Gamma\left(-\frac{\bar{\rho}(v+k+1)}{\delta}\right)\right. \\
& \left.+\sum_{j=0}^{\bar{\rho}-1} A_{\bar{\rho} k+j-K} \Gamma\left(1-k-\frac{j}{\bar{\rho}}-\beta\right) z^{\beta+j / \bar{\rho}-1}\right]+R_{n}(z) \tag{29}
\end{align*}
$$

A bound for the remainder is given by

$$
\begin{equation*}
\left|R_{n}(z)\right| \leqslant \frac{\left|A_{n-K}\right| \pi}{\sin (\pi \beta) \Gamma(n / \bar{\rho}+\beta)} z^{n / \bar{\rho}+\beta-1} \tag{30}
\end{equation*}
$$

Expansion (29) is convergent.
Proof. Apply theorem 1 to the integral (2) with $s=\bar{\rho}, f(t)=f_{1}(t)$ given in (27), $a_{k}=A_{k-K}$ given in (28) and β and K given above. After the change of variable $t=u^{-\bar{\rho} / \delta}$, the Mellin transform of $f_{1}(t)$ reads

$$
\begin{equation*}
M\left[f_{1} ; k+1\right]=\frac{\bar{\rho}}{\delta} \int_{0}^{\infty} u^{-\bar{\rho}(\nu+k+1) / \delta-1} \mathrm{e}^{-u} \mathrm{~d} u=\frac{\bar{\rho}}{\delta} \Gamma\left(-\frac{\bar{\rho}(\nu+k+1)}{\delta}\right) \tag{31}
\end{equation*}
$$

Expansion (29) follows after introducing (31) in theorem 1.
Now we derive the bound (30). We write $f_{n}(t)$ in (28) as

$$
\begin{equation*}
f_{n}(t)=t^{v} r_{n-K}(t) \tag{32}
\end{equation*}
$$

where $r_{n}(t)$ represents the nth remainder of the Taylor expansion of $\mathrm{e}^{-t^{-\delta / \bar{\rho}}}$ in powers of $t^{-\delta / \bar{\rho}}$:

$$
\begin{equation*}
\mathrm{e}^{-t^{-\delta / \bar{\rho}}}=1-\frac{\left|A_{\delta}\right|}{t^{\delta / \bar{\rho}}}+\frac{\left|A_{2 \delta}\right|}{t^{2 \delta / \bar{\rho}}}-\cdots+(-1)^{[(n-1) / \delta]} \frac{\left|A_{[(n-1) / \delta] \delta}\right|}{t^{[(n-1) / \delta] \delta / \bar{\rho}}}+r_{n}(t) \tag{33}
\end{equation*}
$$

for $n=1,2,3,4, \ldots$ and $[\cdot]$ is the integer part function. Using the Lagrange formula for the remainder $r_{n}(t)$, we find that two consecutive error terms, $r_{n}(t)$ and $r_{n+\delta}(t)$, have opposite sign: $\operatorname{sign}\left(r_{n}(t)\right)=(-1)^{[(n-1) / \delta]+1}$. Then, expansion (33) verifies the error test and we have (lemma 5):

$$
\begin{equation*}
\left|r_{n}(t)\right| \leqslant \frac{\left|A_{[(n-1) / \delta] \delta+\delta}\right|}{t^{[[(n-1) / \delta \delta \delta+\delta) / \bar{\rho}}} . \tag{34}
\end{equation*}
$$

Using that $n-K$ is a multiple of δ, from (32) and (34) we obtain $\left|f_{n}(t)\right| \leqslant\left|A_{n-K}\right| t^{-n / \bar{\rho}-\operatorname{Re} \beta}$. Then, from corollary 2, bound (30) follows from proposition 1 with $c_{n}=\left|A_{n-K}\right|$. From the second formula in (28) and (30) we have $\lim _{n \rightarrow \infty} R_{n}(z)=0$.

Corollary 4. For $v \bar{\rho} \in \mathbb{Z}, z>0, \bar{\rho}, \delta \in \mathbb{N}$ and $n=\bar{\rho} \delta, 2 \bar{\rho} \delta, 3 \bar{\rho} \delta, \ldots$

$$
\begin{align*}
\mathcal{L}_{f_{1}}(z)= & \sum_{k=-\bar{\rho} \nu-1}^{-1} A_{k-\alpha+3} \Gamma(1-(k+1) / \bar{\rho}) z^{(k+1) / \bar{\rho}-1} \\
& \quad+\sum_{k=0}^{n / \bar{\rho}-1} z^{k}\left[A_{\bar{\rho}(v+k+1)} \frac{(-1)^{k+1}}{k!}(\log z+\gamma)+\frac{(-1)^{k}}{k!} B_{k}\right. \\
& \left.\quad+\sum_{j=0}^{\bar{\rho}-2} A_{\bar{\rho} k+j+\bar{\rho} v+1} \Gamma(1-k-(j+1) / \bar{\rho}) z^{(j+1) / \bar{\rho}-1}\right]+R_{n}(z) \tag{35}
\end{align*}
$$

where the coefficients A_{k} are given in (28) and the coefficients B_{k} are given by

$$
\begin{align*}
& B_{k} \equiv \frac{\bar{\rho}(-1)^{\bar{\rho}(\nu+k+1) / \delta}}{\delta(\bar{\rho}(\nu+k+1) / \delta)!} \psi\left(\frac{\bar{\rho}(\nu+k+1)}{\delta}+1\right) \\
& +\sum_{j=0}^{\bar{\rho}-2}\left[\frac{k!}{((j+1) / \bar{\rho}-1)_{k+1}}-\frac{1}{(j+1) / \bar{\rho}-1}\right] A_{\bar{\rho} k+j+\bar{\rho} \nu+1} \\
& +\sum_{i=1}^{k} \sum_{j=k \bar{\rho}}^{\bar{\rho}(k+1)-1} \frac{(k-i+2)_{i-1} A_{j+\bar{\rho} \nu+1}}{((j+1) / \bar{\rho}-i)_{i}} \tag{36}
\end{align*}
$$

where ψ is the digamma function ([1], equation (6.3.1)).
For $\bar{\rho}>1$, a bound for the remainder is given in (30), whereas for $\bar{\rho}=\beta=1$, two bounds are given by

$$
\begin{equation*}
\left|R_{n}(z)\right| \leqslant \frac{\bar{c}_{n} \pi}{\Gamma(n+1 / 2)} z^{n-1 / 2} \tag{37}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|R_{n}(z)\right| \leqslant\left\{\frac{1}{(n-1)!}\left[\left|A_{n+\nu}\right| \varepsilon+\left|A_{n+v+1}\right|\right]+\frac{\left|A_{n+v+1}\right|}{n!} \Theta(z, \varepsilon)\right\} z^{n} \tag{38}
\end{equation*}
$$

where $\bar{c}_{n}=\operatorname{Max}\left\{\left|A_{n+v+1}\right|,\left|A_{n+\nu}\right|\right\}, \Theta(z, \epsilon)$ is defined in (22) and ε is an arbitrary positive number whose optimum value is given by $\left|A_{n+v+1}\right| /\left(n\left|A_{n+\nu}\right|\right)$. Expansion (35) is convergent.

Proof. To obtain expansion (35) we apply theorem 2 to the integral (2) with $s=\bar{\rho}, f(t)=$ $f_{1}(t)$ given in (27), $\beta=1 / \bar{\rho}, K=-\bar{\rho} v-1$ and $a_{k}=A_{k+\bar{\rho} \nu+1}$. The coefficient B_{k} in (35) is $b_{(k+1) \bar{\rho}}$ given by (12) with $a_{k}=A_{k+\bar{\rho} \nu+1}$. The Mellin transform in formula (12) is given by (31) with k replaced by z. When $z \rightarrow n$, there are two singular terms in the limit of formula (12): $A_{\bar{\rho}(n+1+\nu)} /(z-n)$ and $\Gamma(-\bar{\rho}(\nu+z+1) / \delta)$. Setting $z=n+\eta$, expanding these terms at $\eta=0$ and using (28)(b) we obtain (36).

For $\bar{\rho}>1$, bound (30) is obtained as in corollary 3 . For $\bar{\rho}=\beta=1$, the bounds (37) and (38) are obtained from proposition 2 and corollary 2. From (37) we have $\lim _{n \rightarrow \infty} R_{n}(z)=0$.

3.2. Nonresonant case with depleted tail

The function $f_{3}(t)$ in (5) satisfies

$$
\begin{equation*}
f_{3}(t)=\sum_{k=K}^{n-1} \frac{A_{k-K}}{t^{k / \rho+\beta}}+f_{n}(t) \tag{39}
\end{equation*}
$$

where $K \equiv \operatorname{Int}(\nu+\rho+1), \beta \equiv \operatorname{Fr}(v+\rho+1) / \rho$ and the coefficients A_{k} are

$$
A_{k} \equiv \sum_{j=0}^{k} \frac{(-a)^{k-j}}{(k-j)!} B_{j} \quad B_{j} \equiv \begin{cases}\frac{(-b)^{(j / \delta)}}{(j / \delta)!} & \text { if } \quad j=\dot{\delta} \tag{40}\\ 0 & \text { if } \quad j \neq \dot{\delta}\end{cases}
$$

and $f_{n}(t)=\mathcal{O}\left(t^{-n / \rho-\beta}\right)$ when $t \rightarrow \infty$.

Corollary 5. For $v \notin \mathbb{Z}, z>0$ and $n, \rho, \delta \in \mathbb{N}$ with n being a multiple of ρ and $n-K$ being a multiple of δ,

$$
\begin{array}{r}
\mathcal{L}_{f_{3}}(z)=\sum_{k=0}^{-K-1} A_{k} \Gamma\left(-\frac{(k+v+1)}{\rho}\right) z^{(k+v+1) / \rho}+\sum_{k=0}^{n / \rho-1} z^{k}\left[\frac{(-1)^{k}}{k!} \rho M_{k}\right. \\
\left.+\sum_{j=0}^{\rho-1} A_{\rho k+j-K} \Gamma\left(1-k-\frac{j}{\rho}-\beta\right) z^{\beta+j / \rho-1}\right]+R_{n}(z) \tag{41}
\end{array}
$$

where the coefficients M_{k} are given by

$$
M_{k} \equiv \begin{cases}\Gamma(v-\rho k+1)(a+b)^{\rho k-v-1} & \text { if } \quad \delta=1 \tag{42}\\ \sum_{j=0}^{\infty} \frac{(-a)^{j}}{\delta j!} \Gamma\left(\frac{j-k \rho+v+1}{\delta}\right) b^{(k \rho-j-v-1) / \delta} & \text { if } \quad \delta>1\end{cases}
$$

A bound for the remainder is given by

$$
\begin{equation*}
\left|R_{n}(z)\right| \leqslant \frac{\pi c_{n}}{\sin (\pi \beta) \Gamma(n / \rho+\beta)} z^{n / \rho+\beta-1} \tag{43}
\end{equation*}
$$

where we can take $c_{n}=\left|A_{n-K}\right|$ if δ is odd. In any case, we can take $c_{n}=\mathrm{e}^{a+b}$. Expansion (41) is convergent.

Proof. To obtain expansion (41), we apply theorem 1 to the integral (2) with $s=\rho, f(t)=$ $f_{3}(t)$ given in (5), $a_{k}=A_{k-K}$ given in (40) and β and K as given above. After the change of variable $t=u^{-\rho}$, the Mellin transform of $f_{3}(t)$ reads

$$
M\left[f_{3} ; k+1\right]=\rho \int_{0}^{\infty} u^{\nu-\rho k} \mathrm{e}^{-b u^{\delta}} \mathrm{e}^{-a u} \mathrm{~d} u
$$

For $\delta=1$, this is an elementary integral given by the first line in the right hand side of (42). If $\delta>1$ we expand $\mathrm{e}^{-a u}$ in powers of u and interchange sum and integral to obtain the second line in the right hand side of (42).

Now we obtain bound (43). We write $f_{n}(t)$ in (39) as

$$
f_{n}(t)=t^{-(\nu+1) / \rho-1} r_{n-K}(t)
$$

where $r_{n}(t)$ is the remainder of the Taylor expansion of $\mathrm{e}^{-a t^{-1 / \rho}} \mathrm{e}^{-b t^{-\delta / \rho}}$ in powers of $t^{-1 / \rho}$:

$$
r_{n-K}(t)=\sum_{j=0}^{[(n-K-1) / \delta]} \sum_{l=0}^{\delta-1} \frac{(-a)^{j \delta+l}}{(j \delta+l)!} t^{-(j \delta+l) / \rho} r_{n-K-j \delta-l}^{2}(t)+r_{n-K}^{1}(t) r_{0}^{2}(t)
$$

where $r_{n}^{1}(t)$ and $r_{n}^{2}(t)$ are, respectively, the remainders of the expansions of $\mathrm{e}^{-a t^{-1 / \rho}}$ and $\mathrm{e}^{-b t^{-\delta / \rho}}$ in powers of $t^{-1 / \rho}$:

$$
\begin{align*}
& \mathrm{e}^{-a t^{-1 / \rho}}=\sum_{k=0}^{n-1} \frac{(-a)^{k}}{k!} t^{-k / \rho}+r_{n}^{1}(t) \tag{44}\\
& \mathrm{e}^{-b t^{-\delta / \rho}}=\sum_{k=0}^{n-1} b_{k} t^{-k / \rho}+r_{n}^{2}(t) \quad b_{k} \equiv \begin{cases}\frac{(-b)^{(k / \delta)}}{(k / \delta)!} & \text { if } \quad k=\dot{\delta} \\
0 & \text { if } k \neq \dot{\delta}\end{cases}
\end{align*}
$$

We write $n-K=m \delta$ for some $m \in \mathbb{N}$. Therefore, $r_{n-K-j \delta-l}^{2}(t)=r_{(m-j) \delta}^{2}(t)$ for $l=$ $0,1,2, \ldots, \delta-1$. Using the fact that $\operatorname{sign}\left(r_{n}^{2}(t)\right)=(-1)^{\lfloor(n-1) / \delta\rfloor+1}$ (see paragraph following equation (33)), we conclude that $\operatorname{sign}\left(r_{n-K-j \delta-l}^{2}(t)\right)=(-1)^{m-j}$ for $l=0,1,2, \ldots, \delta-1$. Defining

$$
\widetilde{a_{j}} \equiv(-a)^{j \delta} t^{-j \delta / \rho} \sum_{l=0}^{\delta-1} \frac{\left(-a t^{-1 / \rho}\right)^{l}}{(j \delta+l)!}
$$

and using the fact that $\sum_{l=0}^{\delta-1}\left(-a t^{-1 / \rho}\right)^{l} /(j \delta+l)!>0$, we have $\operatorname{sign}\left(\widetilde{a_{j}}\right)=(-1)^{j \delta}=(-1)^{j}$ for odd δ. Then, taking into account that $r_{0}(t)>0$ and $\operatorname{sign}\left(r_{n-K}^{1}(t)\right)=(-1)^{m \delta}=(-1)^{m}$, we have, for $m=1,2,3, \ldots$,

$$
\operatorname{sign}\left(r_{n-K}(t)\right)=\operatorname{sign}\left(\sum_{j=0}^{[(n-K-1) / \delta]} \widetilde{a}_{j} r_{n-K-j \delta}^{2}(t)+r_{n-K}^{1}(t) r_{0}^{2}(t)\right)=(-1)^{m}
$$

We conclude that the function $f_{3}(t)$ verifies the error test for odd δ and, from corollary 2 , we obtain (43) with $c_{n}=\left|A_{n-K}\right|$.

For any δ, by corollary 1 , the remainder in expansion (41) verifies the bounds given in propositions 1 and 2 with $c_{n}=C r^{-n}$, where C is a bound of $g(w)=\mathrm{e}^{-a w} \mathrm{e}^{-b w^{5}}$ in the region W considered in lemma 4 and $0<r<\infty$. We take $r=1$ and then $C=\mathrm{e}^{a+b}$. Therefore, bound (43) holds with $c_{n}=\mathrm{e}^{a+b}$ and, from this bound, we have $\lim _{n \rightarrow \infty} R_{n}(z)=0$.

Corollary 6. For $v \in \mathbb{Z}, z>0, \rho, \delta \in \mathbb{N}$ and $n=\rho \delta, 2 \rho \delta, 3 \rho \delta, \ldots$

$$
\begin{align*}
\mathcal{L}_{f_{3}}(z)= & \sum_{k=v+\rho}^{-1} \\
& A_{k-v-\rho} \Gamma(1-(k+1) / \rho) z^{(k+1) / \rho-1} \\
& +\sum_{k=0}^{n / \rho-1} z^{k}\left[A_{\rho k-v-1} \frac{(-1)^{k+1}}{k!}(\log z+\gamma)+\frac{(-1)^{k}}{k!} C_{k}\right. \tag{45}\\
& \left.+\sum_{j=0}^{\rho-2} A_{\rho k+j-v-\rho} \Gamma(1-k-(j+1) / \rho) z^{(j+1) / \rho-1}\right]+R_{n}(z)
\end{align*}
$$

where the coefficients A_{k} are given in (40) and the coefficients C_{k} are given by

$$
\begin{align*}
C_{k} \equiv \rho C_{k}^{\prime}+ & \sum_{j=0}^{\rho-2}\left[\frac{k!}{((j+1) / \rho-1)_{k+1}}-\frac{1}{(j+1) / \rho-1}\right] A_{\rho k+j-v-\rho} \\
& +\sum_{i=1}^{k} \sum_{j=k \rho}^{\rho(k+1)-1} \frac{(k-i+2)_{i-1} A_{j-v-\rho}}{((j+1) / \rho-i)_{i}} \tag{46}
\end{align*}
$$

where

$$
\begin{align*}
C_{k}^{\prime} \equiv & \sum_{j=0 ; j-\rho k+v+1 \neq \delta}^{\rho k-v-1} \frac{(-a)^{j}}{j!\delta} b^{(\rho k-j-v-1) / \delta} \Gamma\left(\frac{j-\rho k+v+1}{\delta}\right) \\
& +\sum_{j=0 ; j-\rho k+v+1=\delta}^{\rho k-v-1} \frac{(-a)^{j}}{j!\delta} B_{\rho k-v-1-j} \psi\left(\frac{\rho k-v-1-j}{\delta}+1\right) \\
& +\sum_{j=0}^{\infty} \frac{(-1)^{\rho k-v+j} a^{\rho k-v+j}}{(\rho k-v+j)!\delta} \Gamma\left(\frac{j+1}{\delta}\right) b^{-(j+1) / \delta} \tag{47}
\end{align*}
$$

and B_{j} are defined in (40).
For $\rho>1$, a bound for the remainder is given by (43) with $c_{n}=\mathrm{e}^{a+b}$ for any δ or $c_{n}=\left|A_{n-v-\rho}\right|$ for odd δ. For $\rho=\beta=1$, two bounds are given by

$$
\begin{equation*}
\left|R_{n}(z)\right| \leqslant \frac{\bar{c}_{n} \pi}{\Gamma(n+1 / 2)} z^{n-1 / 2} \tag{48}
\end{equation*}
$$

and, for any $\epsilon>0$,

$$
\begin{equation*}
\left|R_{n}(z)\right| \leqslant\left\{\frac{1}{(n-1)!}\left[\left(c_{n-1}+\left|A_{n-v-\rho-1}\right|\right) \varepsilon+c_{n}\right]+\frac{c_{n}}{n!} \Theta(z, \varepsilon)\right\} z^{n} \tag{49}
\end{equation*}
$$

where $\Theta(z, \varepsilon)$ is defined in (22). In these formulae we can take, for odd $\delta, c_{n}=$ $\left|A_{n-v-\rho}\right|, c_{n-1}=0$ and $\bar{c}_{n}=\operatorname{Max}\left\{\left|A_{n-v-\rho}\right|,\left|A_{n-v-\rho-1}\right|\right\}$. For any δ we can take $\bar{c}_{n}=\operatorname{Max}\left\{\mathrm{e}^{a+b}, \mathrm{e}^{a+b}+\left|A_{n-v-\rho-1}\right|\right\}$ and $c_{n}=c_{n-1}=\mathrm{e}^{a+b}$. Expansion (45) is convergent.
Proof. To obtain expansion (45) we apply theorem 2 to integral (2) with $s=\rho, f(t)=f_{3}(t)$ given in (5), $\beta=1 / \rho, K=v+\rho$ and $a_{k}=A_{k-v-\rho}$. The coefficient C_{k} in (45) is $b_{(k+1) \rho}$ given by (12) with $a_{n}=A_{n-v-\rho}$. The Mellin transform in formula (12) is given by (42) replacing k by z. When $z \rightarrow n$, there are two singular terms in the limit in (12): $A_{\rho n-v-1} /(z-n)$ and $\Gamma((j-\rho z+v+1) / \delta)$ when $(j-n \rho+v+1) / \delta-1 \in \mathbb{Z}^{-}$. Setting $z=n+\eta$, expanding these terms at $\eta=0$ and using (40) we obtain (46) and (47).

For $\rho>1$, the error bound (43) is obtained as in corollary 5. For $\rho=\beta=1$, bounds (37) and (38) are obtained as in corollary 4: using corollary 2 for odd δ and corollary 1 for any δ. Using any of these bounds we have $\lim _{n \rightarrow \infty} R_{n}(z)=0$.

3.3. Resonant case

The function $f_{5}(t)$ given in (6) satisfies
$f_{5}(t)=\sum_{k=K}^{n-1} \frac{A_{k-K}}{t^{k / \rho+\beta}}+f_{n}(t) \quad A_{k} \equiv \frac{(-1)^{k}}{\sin \theta} \sum_{j=0}^{k} \frac{a^{k-j}}{(k-j)!} \frac{\sin [(j+1) \theta]}{\left(b^{2}+g^{2}\right)^{j / 2+1}}$
where $K \equiv \operatorname{Int}(v+\rho+1), \beta \equiv F r(v+\rho+1) / \rho, \theta \equiv \arctan (g / b)$ and $f_{n}(t)=\mathcal{O}\left(t^{-n / \rho-\beta}\right)$ when $t \rightarrow \infty$.

Corollary 7. For $v \notin \mathbb{Z}, z>0, \rho \in \mathbb{N}$ and $n=\rho, 2 \rho, 3 \rho, \ldots$

$$
\begin{align*}
\mathcal{L}_{f_{5}}(z)= & \sum_{k=0}^{-K-1}
\end{align*} A_{k} \Gamma(-(k+v+1) / \rho) z^{(k+v+1) / \rho}+\sum_{k=0}^{n / \rho-1} z^{k}\left[\frac{(-1)^{k} \rho}{g k!} M_{k} .\right.
$$

where the coefficients M_{k} are given by

$$
\begin{equation*}
M_{k} \equiv \Gamma(v+1-\rho k) \operatorname{Im}\left[(b-\mathrm{i} g)^{v-\rho k} \mathrm{e}^{a(b-\mathrm{i} g)} \Gamma(\rho k-v, a(b-\mathrm{i} g))\right] \tag{52}
\end{equation*}
$$

and $\Gamma(z, x)$ denotes the incomplete gamma function ([1], equation (653)). A bound for the remainder is given by

$$
\begin{equation*}
\left|R_{n}(z)\right| \leqslant \frac{\pi c_{n}}{\sin (\pi \beta) \Gamma(n / \rho+\beta)} z^{n / \rho+\beta-1} \tag{53}
\end{equation*}
$$

where

$$
\begin{equation*}
c_{n}=\frac{1}{\sin \theta} \sum_{k=0}^{n-1} \frac{a^{n-k}}{(n-k)!} \frac{|\sin [(k+1) \theta]|}{\left(b^{2}+g^{2}\right)^{k / 2+1}}+\frac{2}{g^{2}\left(b^{2}+g^{2}\right)^{n / 2}} . \tag{54}
\end{equation*}
$$

Expansion (51) is convergent.
Proof. We apply theorem 1 to integral (2) with $s=\rho, f(t)=f_{5}(t)$ given in (6), $a_{k}=A_{k-K}$ given in (50) and β and K as given above. The Mellin transform of $f_{5}(t)$ reads

$$
M\left[f_{5} ; k+1\right]=\rho \int_{0}^{\infty} \frac{u^{\nu-\rho k}}{g^{2}+(b-u)^{2}} \mathrm{e}^{-a u} \mathrm{~d} u=\frac{\rho}{w_{2}-w_{1}}\left[I\left(w_{1}\right)-I\left(w_{2}\right)\right]
$$

where $w_{1} \equiv b+\mathrm{i} g, w_{2} \equiv b-\mathrm{i} g$ and

$$
I(w) \equiv \int_{0}^{\infty} \frac{u^{v-\rho k}}{u+w} \mathrm{e}^{-a u} \mathrm{~d} u=\Gamma(v+1-\rho k) w^{v-\rho k} \mathrm{e}^{a w} \Gamma(\rho k-v, a w)
$$

where we have used [16, p 325, equation (13)]. Then (51) follows from theorem 1 after straightforward computations. To obtain the error bound (53) we apply proposition 1 to the function $f_{5}(t)$. We write
$f_{n}(t)=t^{-(\nu+1) / \rho-1} r_{n-K}(t) \quad r_{n}(t) \equiv \sum_{k=0}^{n-1} c_{k}^{2} t^{-k / \rho} r_{n-k}^{1}(t)+r_{n}^{2}(t) r_{0}^{1}(t)$
where $r_{n}^{1}(t)$ is the remainder in expansion (44) of $\mathrm{e}^{-a t^{-1 / \rho}}$ in powers of $t^{-1 / \rho}$ and $r_{n}^{2}(t)$ is the remainder in the expansion of $\left[\left(b-t^{-1 / \rho}\right)^{2}+g^{2}\right]^{-1}$ in powers of $t^{-1 / \rho}$:

$$
\frac{1}{\left(b-t^{-1 / \rho}\right)^{2}+g^{2}}=\sum_{k=0}^{n-1} c_{k}^{2} t^{-k / \rho}+r_{n}^{2}(t) \quad c_{k}^{2} \equiv \frac{(-1)^{k} \sin [(k+1) \theta]}{\left(b^{2}+g^{2}\right)^{k / 2+1} \sin \theta}
$$

Expansion (44), as well as expansion (33), satisfies the error test and then, from lemma 5, $\left|r_{n}^{1}(t)\right| \leqslant a^{n} t^{-n / \rho} / n!$. On the other hand
$\frac{1}{(b-u)^{2}+g^{2}}=\frac{1}{u-w_{1}} \frac{1}{u-w_{2}} \quad$ and $\quad \frac{1}{u-w}=-\frac{1}{w} \sum_{k=0}^{n-1}\left(\frac{u}{w}\right)^{k}+\frac{(u / w)^{n}}{u-w}$.
Therefore,

$$
\begin{aligned}
r_{n}^{2}(t) & =-\frac{1}{w_{1}} \sum_{k=0}^{n-1}\left(\frac{u}{w_{1}}\right)^{k} \frac{\left(u / w_{2}\right)^{n-k}}{u-w_{2}}+\frac{\left(u / w_{1}\right)^{n}}{u-w_{1}} \frac{1}{u-w_{2}} \\
& =\frac{u^{n}}{u-w_{2}}\left[\frac{1-\left(w_{2} / w_{1}\right)^{n}}{w_{2}-w_{1}} \frac{1}{w_{2}^{n}}+\frac{1}{u-w_{1}} \frac{1}{w_{1}^{n}}\right]
\end{aligned}
$$

After trivial manipulations we obtain $\left|r_{n}^{2}(t)\right| \leqslant 2 g^{-2} t^{-n / \rho}\left(b^{2}+g^{2}\right)^{-n / 2}$. Collecting these bounds for $r_{n}^{1}(t)$ and $r_{n}^{2}(t)$ in (55) we find

$$
\left|r_{n}(t)\right| \leqslant\left[\sum_{k=0}^{n-1}\left|c_{k}^{2}\right| \frac{a^{n-k}}{(n-k)!}+\frac{2}{g^{2}\left(b^{2}+g^{2}\right)^{n / 2}}\right] t^{-n / \rho}
$$

From proposition 1 we obtain (53) and (54) and $\lim _{n \rightarrow \infty} R_{n}(z)=0$.
Corollary 8. For $v \in \mathbb{Z}, z>0, \rho \in \mathbb{N}$ and $n=\rho, 2 \rho, 3 \rho, \ldots$

$$
\begin{align*}
& \mathcal{L}_{f_{5}}(z)=\sum_{k=\nu+\rho}^{-1} A_{k-\nu-\rho} \Gamma(1-(k+1) / \rho) z^{(k+1) / \rho-1} \\
& +\sum_{k=0}^{n / \rho-1} z^{k}\left[A_{\rho k-\nu-1} \frac{(-1)^{k+1}}{k!}(\log z+\gamma)+\frac{(-1)^{k}}{k!} B_{k}\right. \\
& \left.+\sum_{j=0}^{\rho-2} A_{\rho k+j-\nu-\rho} \Gamma(1-k-(j+1) / \rho) z^{(j+1) / \rho-1}\right]+R_{n}(z) . \tag{56}
\end{align*}
$$

The coefficients A_{k} are given in (50) and the coefficients B_{k} are

$$
\begin{align*}
B_{k} \equiv \rho B_{k}^{\prime}+\sum_{j=0}^{\rho-2} & {\left[\frac{k!}{((j+1) / \rho-1)_{k+1}}-\frac{1}{(j+1) / \rho-1}\right] A_{\rho k+j-v-\rho} } \\
& +\sum_{i=1}^{k} \sum_{j=k \rho}^{\rho(k+1)-1} \frac{(k-i+2)_{i-1} A_{j-v-\rho}}{((j+1) / \rho-i)_{i}} \tag{57}
\end{align*}
$$

where

$$
\begin{equation*}
B_{k}^{\prime} \equiv \frac{(-1)^{\rho k-v-1}}{(\rho k-v-1)!} \frac{\psi(\rho k-v)}{w_{2}-w_{1}}\left[m_{k}\left(w_{1}\right)-m_{k}\left(w_{2}\right)\right] \tag{58}
\end{equation*}
$$

with

$$
\begin{equation*}
m_{k}(w) \equiv w^{v-\rho k}\left[\mathrm{e}^{a w} \Gamma(\rho k-v)+\frac{(a w)^{\rho k-v}}{v-\rho k}{ }_{1} F_{1}(1, \rho k+1-v, a w)\right] \tag{59}
\end{equation*}
$$

where ${ }_{1} F_{1}(a, b, z)$ denotes Kummer's confluent hypergeometric function ([1], p 504, equation (13.1.2)).

For $\rho>1$, a bound for the remainder $R_{n}(z)$ is given in (53) and (54). For $\rho=\beta=1$, two bounds are given by (48) and (49) with $\bar{c}_{n}=\operatorname{Max}\left\{c_{n}, c_{n-1}+\left|A_{n-v-\rho-1}\right|\right\}$ and c_{n} given in (54) for $\Theta(z, \epsilon)$ defined in (22). Expansion (56) is convergent.

Proof. To obtain expansion (56) we apply theorem 2 to integral (2) with $s=\rho, f(t)=f_{5}(t)$ given in (6), $\beta=1 / \rho, K=v+\rho$ and $a_{k}=A_{k-v-\rho}$. The coefficients B_{k} in (56) are $b_{(k+1) \rho}$ given by (12) with $a_{k}=A_{k-v+\rho}$. For $k=0,1,2, \ldots$, the Mellin transform in formula (12) is given by (52) replacing k by z. When $z \rightarrow n$, there are two singular terms in the limit in (12): $A_{\rho n-v-1} /(z-n)$ and $\Gamma(v+1-\rho z)$. Setting $z=n+\eta$, expanding these terms at $\eta=0$ and using (50) we obtain (57) -(59). The error bounds (48), (49) and (53) and (54) are obtained as in corollary 7. From (53) and (54) we see that $\lim _{n \rightarrow \infty} R_{n}(z)=0$.

3.4. Nonresonant case with high-energy cut-off

The function $f_{2}(t)$ given in (4) satisfies

$$
f_{2}(t)=\sum_{k=K}^{n-1} \frac{A_{k-K}}{t^{k / \rho+\beta}}+f_{n}(t)
$$

where $K \equiv \operatorname{Int}(\nu+\rho+1), \beta=\operatorname{Fr}(\nu+\rho+1) / \rho$ and the coefficients A_{k} are defined by

$$
\begin{align*}
& A_{k} \equiv \sum_{j=0}^{k} B_{k-j} E_{j} \quad B_{j} \equiv \begin{cases}\binom{-(v+1) / \rho-1}{j / \rho} & \text { if } \quad j=\dot{\rho} \\
0 & \text { if } j \neq \dot{\rho}\end{cases} \tag{60}\\
& E_{j}=\sum_{i=0}^{j} \frac{(-a d)^{i}}{i!} b_{i, j-i} \quad b_{i, j} \equiv \begin{cases}\binom{-i / \rho}{j / \rho} & \text { if } \quad j=\dot{\rho} \\
0 & \text { if } \quad j \neq \dot{\rho}\end{cases} \tag{61}
\end{align*}
$$

and $f_{n}(t)=\mathcal{O}\left(t^{-n / \rho-\beta}\right)$ when $t \rightarrow \infty$.
Corollary 9. For $v \notin \mathbb{Z}, z>0, \rho \in \mathbb{N}$ and $n=\rho, 2 \rho, 3 \rho, \ldots$

$$
\begin{align*}
\mathcal{L}_{f_{2}}(z)= & \sum_{k=0}^{-K-1} A_{k} \Gamma\left(-\frac{k+v+1}{\rho}\right) z^{(k+v+1) / \rho}+\sum_{k=0}^{n / \rho-1} z^{k}\left[(-1)^{k} M_{k}\right. \\
& \left.+\sum_{j=0}^{\rho-1} A_{\rho k+j-K} \Gamma(1-k-j / \rho-\beta) z^{\beta+j / \rho-1}\right]+R_{n}(z) \tag{62}
\end{align*}
$$

Coefficients M_{k} are given by

$$
\begin{equation*}
M_{k} \equiv \sum_{j=0}^{\infty} \frac{\Gamma((j+v+1) / \rho-k)}{\Gamma((j+v+1) / \rho+1)} \frac{(-a d)^{j}}{j!} \tag{63}
\end{equation*}
$$

A bound for the remainder is given by

$$
\begin{equation*}
\left|R_{n}(z)\right| \leqslant \frac{C \pi}{r^{n} \sin (\pi \beta) \Gamma(n / \rho+\beta)} z^{n / \rho+\beta-1} \tag{64}
\end{equation*}
$$

where C is a bound of $g(w)=\left(1+w^{\rho}\right)^{-(v+1) / \rho-1} \mathrm{e}^{-a d w\left(1+w^{\rho}\right)^{-1 / \rho}}$ in the region W considered in lemma 4 with
$0<r<|\sin (\pi / \rho)| \quad$ if $\quad \rho \geqslant 3 \quad$ and $\quad 0<r<1 \quad$ if $\quad \rho=1,2$.
Expansion (62) is convergent.
Proof. To obtain expansion (62) we apply theorem 1 to integral (2) with $s=\rho, f(t)=f_{2}(t)$ given in (4), $a_{k}=A_{k-K}$ given in (60) and (61) and β and K given above.

The Mellin transform of $f_{2}(t)$ reads

$$
M\left[f_{2} ; k+1\right]=\int_{0}^{\infty} t^{k}(1+t)^{-(\nu+1) / \rho-1} \mathrm{e}^{-a d(1+t)^{-1 / \rho}} \mathrm{d} t
$$

Expanding $\mathrm{e}^{-a d(1+t)^{-1 / \rho}}$ in powers of $(1+t)^{-1 / \rho}$ and interchanging sum and integral we obtain

$$
M\left[f_{2} ; k+1\right]=\sum_{j=0}^{\infty} \frac{(-a d)^{j}}{j!} \int_{0}^{\infty} t^{k}(1+t)^{-(j+v+1) / \rho-1} \mathrm{~d} t
$$

From here, (63) follows after straightforward computations.
On the other hand, by corollary 1 , the remainder in expansion (62) verifies the bounds given in propositions 1 and 2 with $c_{n}=C r^{-n}$, where C is a bound of $g(w)=w^{-\nu-\rho-1} f\left(w^{-\rho}\right)=$ $\left(1+w^{\rho}\right)^{-(\nu+1) / \rho-1} \mathrm{e}^{-a d w\left(1+w^{\rho}\right)^{-1 / \rho}}$ in the region W considered in lemma 4. In that lemma we must take $0<r<\sigma=$ distance of the nearest ρ-root of -1 to the positive real axis. Therefore, bounds (64) and (65) hold. From corollary 1 we have $\lim _{n \rightarrow \infty} R_{n}(z)=0$.

Corollary 10. For $v \in \mathbb{Z}, z>0, \rho \in \mathbb{N}$ and $n=\rho, 2 \rho, 3 \rho, \ldots$

$$
\left.\begin{array}{rl}
\mathcal{L}_{f_{2}}(z)= & \sum_{k=v+\rho}^{-1}
\end{array} A_{k-v-\rho} \Gamma(1-(k+1) / \rho) z^{(k+1) / \rho-1}\right) \quad \begin{aligned}
& \quad+\sum_{k=0}^{n / \rho-1} z^{k}\left[A_{\rho k-v-1} \frac{(-1)^{k+1}}{k!}(\log z+\gamma)+\frac{(-1)^{k}}{k!} B_{k}\right. \\
& \\
& \left.\quad+\sum_{j=0}^{\rho-2} A_{\rho k+j-v-\rho} \Gamma(1-k-(j+1) / \rho) z^{(j+1) / \rho-1}\right]+R_{n}(z) \tag{66}
\end{aligned}
$$

where the coefficients A_{k} are given in (60) and the coefficients B_{k} are

$$
\left.\left.\left.\begin{array}{rl}
B_{k} \equiv k!C_{k}+ & \sum_{j=0}^{\rho-2}
\end{array}\right] \frac{k!}{((j+1) / \rho-1)_{k+1}}-\frac{1}{(j+1) / \rho-1}\right] A_{\rho k+j-v-\rho}\right)
$$

where

$$
\begin{aligned}
C_{k} \equiv \sum_{j=0 ; j+v+1 \neq \dot{\rho}}^{\rho k-v-1} & \frac{(-a d)^{j}}{j!} \frac{\Gamma((j+v+1) / \rho-k)}{\Gamma((j+v+\rho+1) / \rho)} \\
& +\sum_{j=0 ; j+v+1=\dot{\rho}}^{\rho k-v-1} \frac{(-1)^{j+k-(j+v+1) / \rho}(a d)^{j}}{j!(k-(j+v+1) / \rho)!\Gamma((j+v+1) / \rho+1)} \\
& \times[\psi(k+1)-\psi(k+1-(j+v+1) / \rho)] \\
& +\sum_{j=\rho k-v}^{\infty} \frac{(-a d)^{j}}{j!} \frac{\Gamma((j+v+1) / \rho-k)}{\Gamma((j+v+1) / \rho+1)} .
\end{aligned}
$$

For $\rho>1$, a bound for the remainder $R_{n}(z)$ is given by (64) with $\beta=1 / \rho$ and C and r given there. For $\rho=\beta=1$, two bounds are given by (48) and (49) with $c_{n}=C r^{-n}, \bar{c}_{n}=$ $\operatorname{Max}\left\{\mathrm{Cr}^{-n}, \mathrm{Cr}^{-n+1}+\left|A_{n-v-\rho-1}\right|\right\}$ and C and r given in corollary 9. Expansion (66) is convergent.

Proof. To obtain expansion (66) we apply theorem 2 to integral (2) with $s=\rho, f(t)=f_{2}(t)$ given in (4), $\beta=1 / \rho, K=v+\rho$ and $a_{k}=A_{k-v-\rho}$. The coefficient B_{k} in (66) is $b_{(k+1) \rho}$ given by (12) with $a_{k}=A_{k-v-\rho}$. The Mellin transform in formula (12) is given by (63) with k replaced by z. When $z \rightarrow n$, there are two singular terms in the limit of (12): $A_{\rho n-v-1} /(z-n)$ and $\Gamma((j+v+1) / \rho-z)$ when $(j+v+1) / \rho-n-1 \in \mathbb{Z}^{-}$. Setting $z=n+\eta$, expanding these terms at $\eta=0$ and using (60) and (61) we obtain (67).

The error bounds are obtained as in corollary 9. From corollary 1 we have $\lim _{n \rightarrow \infty} R_{n}(z)=0$.

4. Numerical experiments

The following tables (tables 1-8) show numerical experiments about the approximation and the accuracy of the error bounds supplied by corollaries $3-10$. In these tables, the second

Table 1. Approximation supplied by (29) and error bounds given by (30).

| Parameter values: $v=\frac{1}{2}, \delta=1, \bar{\rho}=3, n=3,6$ | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| z | $\mathcal{L}_{f_{1}}(z)$ | First order
 approximation | Relative
 error | Relative
 error bound | Second order
 approximation | Relative
 error | Relative
 error bound |
| 0.1 | 17.5163009 | 18.073008 | 0.031 | 0.053 | 17.5176537 | 7.72×10^{-5} | 8.89×10^{-5} |
| 0.01 | 709.943936 | 712.372622 | 0.0034 | 0.0042 | 709.9444 | 6.52×10^{-7} | 6.94×10^{-7} |
| 0.001 | 25260.95627 | 25269.5468 | 3.4×10^{-4} | 3.7×10^{-4} | 25260.95642 | 5.996×10^{-9} | 6.16×10^{-9} |
| 0.0001 | 844353.3251 | 844381.777 | 3.37×10^{-5} | 3.5×10^{-5} | 844353.3251 | 5.76×10^{-11} | 5.83×10^{-11} |
| 0.00001 | $2.74011004 \times$ | $2.74011922 \times$ | 3.35×10^{-6} | 3.4×10^{-6} | $2.74011004 \times$ | 5.65×10^{-13} | 5.68×10^{-13} |
| | 10^{7} | 10^{7} | | | 10^{7} | | |

Table 2. Approximation supplied by (35) and error bounds given by $\operatorname{Min}\{(37),(38)\}$.

Parameter values: $v=1, \delta=1, \bar{\rho}=1, n=1,2$							
z	$\mathcal{L}_{f_{1}}(z)$	First order approximation	Relative error	Relative error bound	Second order approximation	Relative error	Relative error bound
0.5	2.7339389	2.5193579	0.08	0.15	2.717029	0.006	0.013
0.1	91.391428	91.324077	7.4×10^{-4}	0.002	91.390435	1.0×10^{-5}	3.4×10^{-5}
0.05	381.709889	381.67065	1.0×10^{-4}	3.5×10^{-4}	381.709606	7.4×10^{-7}	2.9×10^{-6}
0.01	9902.485857	9902.475369	1.0×10^{-6}	6.0×10^{-4}	9902.485843	1.5×10^{-9}	9.9×10^{-9}
0.005	39802.82776	39802.82194	1.5×10^{-7}	1.0×10^{-6}	39802.827757	1.0×10^{-10}	8.7×10^{-10}
0.001	999003.628	999003.627	1.4×10^{-9}	1.9×10^{-8}	999003.628	1.9×10^{-13}	3.0×10^{-12}

Table 3. Approximation supplied by (41) and error bounds given by (43).

Parameter values: $v=-4.9, \delta=3, \rho=2, a=0.2, b=1.7, n=2,8$							
z	$\mathcal{L}_{f_{3}}(z)$	First order approximation	Relative error	Relative error bound	Second order approximation	Relative error	Relative error bound
0.1	77.6482713	93.66645	0.2	0.48	77.645714	3.29×10^{-5}	2.2×10^{-4}
0.05	316.159579	335.287252	0.06	0.16	316.159166	1.3×10^{-6}	9.0×10^{-6}
0.015	3436.34558	3464.26795	0.008	0.025	3436.34556	5.0×10^{-9}	3.9×10^{-8}
0.005	29661.49798	29703.24225	0.001	0.005	29661.49798	3.56×10^{-11}	2.78×10^{-10}
0.002	178048.65	178108.68	0.0003	0.001	178048.65	1.5×10^{-12}	4.46×10^{-12}

Table 4. Approximation supplied by (45) an error bounds given by (43).

Parameter values: $v=0, \delta=3, \rho=2, a=1, b=1, n=6,12$							
z	$\mathcal{L}_{f_{3}}(z)$	First order approximation	Relative error	Relative error bound	Second order approximation	Relative error	Relative error bound
0.2	0.3255718	0.3404663	0.046	0.054	0.325571	7.8×10^{-7}	9.0×10^{-7}
0.1	0.4667515	0.469481	0.0058	0.0067	0.4667514	1.24×10^{-8}	1.39×10^{-8}
0.08	0.51643	0.513221	0.003	0.0034	0.511643	3.3×10^{-9}	3.7×10^{-9}
0.05	0.602377	0.6028736	0.0008	0.0009	0.602377	2.0×10^{-10}	2.4×10^{-10}
0.02	0.756695	0.756747	6.8×10^{-5}	7.4×10^{-5}	0.756695	1.15×10^{-12}	1.22×10^{-12}
0.005	0.923849	0.923851	1.8×10^{-6}	1.88×10^{-6}	0.923849	4.8×10^{-16}	4.9×10^{-16}

Table 5. Approximation supplied by (51) and error bounds given by (53).

| Parameter values: $v=-1.4, a=0.2, \rho=2, b=1, g=2, n=4,6$ | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| z | $\mathcal{L}_{f_{5}}(z)$ | Second order
 approximation | Relative
 error | Relative
 error bound | Third order
 approximation | Relative
 error | Relative
 error bound |
| 0.002 | 2.7176126 | 2.7176126 | 6.34×10^{-5} | 1.96×10^{-4} | 2.7177846 | 1.0×10^{-7} | 1.2×10^{-7} |
| 0.001 | 3.1652507 | 3.1652046 | 1.4×10^{-5} | 6.85×10^{-5} | 3.165206 | 1.0×10^{-8} | 2.17×10^{-8} |
| 0.0005 | 3.691259 | 3.691246 | 3.4×10^{-6} | 2.38×10^{-5} | 3.691259 | 1.16×10^{-9} | 3.77×10^{-9} |
| 0.0001 | 5.2611778 | 5.261177 | 1.48×10^{-7} | 2.0×10^{-6} | 5.2611778 | 6.5×10^{-12} | 6.5×10^{-11} |
| 0.00005 | 6.11595839 | 6.11595813 | 4.19×10^{-8} | 7.2×10^{-7} | 6.115958387 | 7.0×10^{-13} | 1.0×10^{-11} |
| 0.00001 | 8.63234549 | 8.63234546 | 2.75×10^{-9} | 6.3×10^{-8} | 8.63234549 | 3.9×10^{-15} | 1.997×10^{-13} |

Table 6. Approximation supplied by (56) and error bounds given by (48) and (49).

Parameter values: $v=-2, a=1.2, \rho=3, b=1, g=2, n=6,9$							
z	$\mathcal{L}_{f_{5}}(z)$	Second order approximation	Relative error	Relative error bound	Third order approximation	Relative error	Relative error bound
0.1	-0.16898599	-0.17026623	0.007	0.01	-0.16897995	3.6×10^{-5}	1.0×10^{-4}
0.01	0.60470192	0.6046355	1.0×10^{-4}	1.3×10^{-4}	0.60470195	5.0×10^{-8}	1.4×10^{-7}
0.001	2.83539549	2.83539227	1.1×10^{-6}	1.3×10^{-6}	2.8353955	5.1×10^{-11}	1.4×10^{-10}
0.0001	8.3317184	8.3317182	1.8×10^{-8}	2.0×10^{-8}	8.3317184	8.2×10^{-14}	2.2×10^{-13}
0.00001	20.9436177	20.94361772	3.4×10^{-10}	3.8×10^{-10}	20.9436177	1.7×10^{-16}	4.0×10^{-16}

Table 7. Approximation supplied by (62) and error bound given by (64).

Parameter values: $v=-2.7, a=0.2, \rho=3, d=1, n=6,9$							
z	$\mathcal{L}_{f_{2}}(z)$	Second order approximation	Relative error	Relative error bound	Third order approximation	Relative error	Relative error bound
0.01	18.413698	18.4140914	2.1×10^{-5}	3.3×10^{-3}	18.413701	1.9×10^{-7}	1.6×10^{-5}
0.002	49.1073814	49.107511	2.6×10^{-6}	2.0×10^{-4}	49.107382	3.3×10^{-9}	2.0×10^{-7}
0.001	74.081196	74.081266	9.0×10^{-7}	6.6×10^{-5}	74.081196	5.5×10^{-10}	3.0×10^{-8}
0.0005	111.261787	111.261823	3.2×10^{-7}	2.0×10^{-5}	111.261787	8.6×10^{-11}	4.86×10^{-9}
0.0001	282.828257	282.828264	2.5×10^{-8}	1.4×10^{-6}	282.828257	1.0×10^{-12}	6.5×10^{-11}

Table 8. Approximation supplied by (66) and error bounds given by (48) and (49).

Parameter values: $v=-2, a=0.5, \rho=2, d=1, n=4,6$							
z	$\mathcal{L}_{f_{2}}(z)$	Second order approximation	Relative error	Relative error bound	Third order approximation	Relative error	Relative error bound
0.1	3.1817197	3.17711956	0.0014	0.004	3.18175944	1.24×10^{-5}	9.4×10^{-4}
0.05	5.12288486	5.12064893	4.0×10^{-4}	5.0×10^{-3}	5.1228827	4.12×10^{-7}	1.0×10^{-4}
0.01	14.0419098	14.0416086	2.14×10^{-5}	1.6×10^{-4}	14.04190942	2.45×10^{-8}	6.7×10^{-7}
0.005	21.01263467	21.0125168	5.6×10^{-6}	4.0×10^{-5}	21.0126346	3.75×10^{-9}	7.9×10^{-8}
0.001	51.1531027	51.15309049	2.38×10^{-7}	1.46×10^{-6}	51.15310268	1.4×10^{-11}	5.8×10^{-10}
0.0005	74.01286165	74.0128571	6.0×10^{-8}	3.6×10^{-7}	74.01286165	4.9×10^{-12}	7.0×10^{-11}

column represents $\mathcal{L}_{f_{i}}(z)$. The third and sixth columns represent the approximation for the two given values of n. Fourth and seventh columns represent the respective relative errors, and fifth and last columns are the respective relative error bounds.

Acknowledgments

The Dirección General de Ciencia y Tecnologia (REF. BFM2000-0803) and the Gobierno de Navarra (Resolución 92/2002) are acknowledged for their financial support. The University Carlos III of Madrid is acknowledged for its hospitality during the realization of this work.

References

[1] Abramowitz M and Stegun I A 1970 Handbook of Mathematical Functions (New York: Dover)
[2] Anderson W J, Haubold H J and Mathai A M 1994 Astrophysical thermonuclear functions Astrophys. Space Sci. 214 49-70
[3] Bahcall J N 1966 Non-resonant nuclear reactions at stellar temperatures Astrophys. J. 143 259-61
[4] Critchfield C L 1972 Analytic forms of the thermonuclear functions Cosmology, Fusion and Other Matters, George Gamow Memorial Volume ed F Reines (Colorado: University of Colorado Press) pp 186-91
[5] Fowler W A 1984 Experimental and theoretical nuclear astrophysics: the quest for the origin of the elements Rev. Mod. Phys. 56 149-79
[6] Haubold H J and Mathai A M 1984 On nuclear reaction rate theory Ann. Phys. 41 380-96
[7] Haubold H J and Mathai A M 1986 Analytic results for screened non-resonant nuclear reaction rates Astrophys. Space Sci. 127 45-53
[8] Haubold H J and Mathai A M 1986 Analytic representations of thermonuclear reaction rates Stud. Appl. Math. 75 123-38
[9] Haubold H J and Mathai A M 1998 On thermonuclear reaction rates Astrophys. Space Sci. 258 185-99
[10] Kaniadakis G, Lavagno A and Quarati P 1996 Generalized statistics and solar neutrinos Phys. Lett. B 369 308-12
[11] Lapenta G and Quarati P 1993 Analysis of non-Maxwellian fusion reaction rates with electron screening Z. Phys. A 346 243-50
[12] López J L and Ferreira C 2002 Asymptotic expansions of generalized Stieltjes transforms of algebraically decaying functions Stud. Appl. Math. 108 187-215
[13] Mathai A M and Saxena R K 1978 The H-function with Applications in Statistics and Other Disciplines (New York: Wiley)
[14] Mathai A M 1993 A Handbook of Generalized Special Functions for Statistics and Physical Sciences (Oxford: Oxford University Press)
[15] Olver F W J 1974 Special Functions: Asymptotics and Special Functions (New York: Academic)
[16] Prudnikov A P, Brychkov Yu A and Marichev O I 1990 Integrals and Series vol 1 (New York: Gordon and Breach)
[17] Wong R 1989 Asymptotic Approximations of Integrals (New York: Academic)

